
179

Evolving Controllers for Real Robots: A Survey of

the Literature

Joanne Walker, Simon Garrett, Myra Wilson
Department of Computer Science, University of Wales

For many years, researchers in the field of mobile robotics have been investigating the use of genetic
and evolutionary computation (GEC) to aid the development of mobile robot controllers. Alongside the

fundamental choices of the GEC mechanism and its operators, which apply to both simulated and
physical evolutionary robotics, other issues have emerged which are specific to the application of
GEC to physical mobile robotics. This article presents a survey of recent methods in GEC-developed

mobile robot controllers, focusing on those methods that include a physical robot at some point in the
learning loop. It simultaneously relates each of these methods to a framework of two orthogonal
issues: the use of a simulated and/or a physical robot, and the use of finite, training phase evolution

prior to a task and/or lifelong adaptation by evolution during a task. A list of evaluation criteria are pre-
sented and each of the surveyed methods are compared to them. Analyses of the framework and
evaluation criteria suggest several possibilities; however, there appear to be particular advantages in

combining simulated, training phase evolution (TPE) with lifelong adaptation by evolution (LAE) on a
physical robot.

Keywords evolutionary robotics · physical robots · simulation · training · lifelong adaptation by evo-
lution.

1 Introduction

1.1 Motivation

One of the major issues being addressed in robotics is
that of training mobile robots to perform a task without
external supervision or help.1 One response to this chal-
lenge, which has received considerable attention, is the
use of genetic and evolutionary computation (GEC)
(Nolfi & Floreano, 2000; Hornby et al., 2000; Harvey,
1997; Nordin & Banzhaf, 1995). A well-known dichot-
omy has appeared in this research over the last few years
between those who evolve GEC controllers using simu-
lated robots (Jakobi, Husbands, & Harvey, 1995; Bon-

gard, 2002) and those who use physical robots (Floreano
& Mondada, 1994; Watson, Ficici, & Pollack, 1999):

• Simulated robots, that exist in simulations of the
world, are used on the basis that such an approach
is usually less expensive (no robot hardware, or
damage to it caused by experimentation), can be
faster, and allows the researcher to concentrate on
developing the control method rather than the
engineering issues that often surface with physi-
cal robots.

• Physical robots in the real world are used on the
basis that “the world is its own best model”

Copyright © 2003 International Society for Adaptive Behavior
(2003), Vol 11(3): 179–203.
[1059–7123 (200309) 11:3; 179–203; 040092]

Correspondence to: J. Walker, Department of Computer Science,
University of Wales, Aberystwyth SY23 3DB, Wales, UK.
E-mail: jnw@aber.ac.uk,
Tel.: +01-970-621787, Fax: +01-970-622455.

180 Adaptive Behavior 11(3)

(Brooks, 1986) and therefore simulation and off-
line training are not only unnecessary, they can
actually be misleading since no simulation can
fully match real-world complexity (Mataric &
Cliff, 1996).

Simulations of the robot and its environment have
often been used exclusively during a training period
for a number of practical and strategic reasons
(Mataric & Cliff, 1996), but mainly because the time
taken to run any sort of GEC on a physical robot is
generally prohibitive. The practical advantages of
using evolution in simulation have encouraged a
number of researchers to investigate ways of improv-
ing the accuracy of robot simulators, so that smooth
transfer from simulation to reality can take place: for
instance the inclusion of the correct amount of noise
within the simulation has been found to be significant
(Jakobi et al., 1995; Miglino, Lund, & Nolfi, 1995b).
However, there has also been a significant amount of
work which investigates the use of evolutionary algo-
rithms solely on physical robots, with no prior training
in a simulated environment (such as Nehmzow, 2002,
and Floreano, Nolfi, & Mondada, 1998). These choices
highlight another distinction between:

• The development by GEC of a robot controller
during a finite training phase that terminates
before the robot is applied to a task. The control-
ler is not adapted during the task. We will call this
training phase evolution (TPE).

• The development of a controller that is adapted by
GEC throughout the robot’s task. We will call this
lifelong adaptation by evolution (LAE).

Most evolutionary robotics work has used evolution
exclusively during the training phase of the robot con-
troller. The evolutionary algorithm is used to adapt the
robot’s controller to improve the robot’s ability to per-
form its task in its environment. At the end of this
training period the controller is used for the task for
which it was designed, and during the task no further
adaptation takes place. An alternative approach is for
evolution and adaptation to occur during the task of
the robot. This approach is not so prominent but
shows promise. We note that TPE is not a subset of
LAE because TPE occurs before the true task begins
(even if it uses examples of the task as part of the
training process), and LAE occurs during a task. A lit-

erature review is presented, structured by these two,
orthogonal issues—simulation versus real robots, and
TPE versus LAE—and possible new avenues of
research are examined that are suggested by investi-
gating this formalism.

Since this review focuses on the use of evolution
in real robots, there is no in-depth discussion of meth-
ods that use evolution (whether TPE or LAE) only in
a simulated setting. It has been shown that such
approaches can easily evolve solutions that are adap-
tations to features of the simulation that are not
present in the physical world (Brooks, 1992), and
since the question addressed here is “what is the best
way to use evolution to build controllers for physical
robots?,” they also are not our concern. For an excel-
lent, if slightly dated, review of work in this area see
Mataric & Cliff (1996). Finally, it is acknowledged
that evolution is not the only mechanism for adapta-
tion that has been used in robotics, but it is the sole
mechanism under investigation here.

The main contributions of this article are:

• A new review of research in evolutionary robot-
ics.

• A proposed framework for categorizing evolu-
tionary robotics is presented that serves to high-
light aspects of this form of research that are
currently receiving little or no attention.

• A proposed set of criteria is suggested that may be
used to assess the value of any GEC controller
method.

• An assessment of the relative merits of using sim-
ulated and physical robots in the development of
robot controllers.

• An assessment of the relative merits of the TPE
and LAE methods of developing robot control-
lers.

• Suggestions for, and illustrations of, combined
TPE and LAE methods that use the advantages of
simulation before porting to a physical robot.

1.2 Structure of the Article

The article is structured as follows: Section 2 gives a
brief overview of the major GEC algorithms and an
explanation of how they function. Section 3 first intro-
duces the framework used to relate the various types
of evolutionary robotics discussed in this article, and
then defines the evaluation criteria used to assess the

Walker, Garrett, & Wilson Evolution for Real Robots 181

value of that research, with an explanation of the crite-
ria chosen. The literature survey itself is split into
three sections with Section 4 describing TPE methods,
Section 5 examining LAE methods, and Section 6
focusing on the few projects that have combined TPE
and LAE into a single method. Section 7 then suggests
some new directions and draws some conclusions
about their viability.

2 Background: Genetic and
Evolutionary Methods

There are four main, interrelated topics in genetic and
evolutionary computation: genetic algorithms (GAs),
evolutionary strategies (ES), genetic programming (GP),
and evolutionary programming (EP). All GEC methods
are based (if somewhat loosely) on the concepts of
genetics and evolutionary selection, and their terminol-
ogy reflects this. Historically, the clear majority of evo-
lutionary robotics has used GAs. More recently there is
an understanding that these methods represent areas
within the continuum of GEC methods, with less dis-
tinction being made between the different types.

2.1 Genetic Algorithms

GAs are usually attributed to Holland’s work in the
mid-1970s (Holland, 1975); they can be defined as
follows. Consider a population, pi ∈ P, of possible
solutions to (or optimizations of) a problem. Each pi is
known as a chromosome, or genotype containing a
vector of values v→, and in some cases some other ele-
ments too. Traditionally each vi ∈ v→, are chosen from a
binary alphabet, {0, 1}, where each bit, or group of
bits, encodes part of the genotypes’s proposed solu-
tion. Other types of encoding include integer and real-
valued vi elements. These genotypes are tested by a
fitness function, which assesses how good the poten-
tial solution actually is, and manipulated by a number
of operators—usually selection, crossover, and muta-
tion. A complete iteration of fitness function evalua-
tion and application of operators to the whole
population, known as a generation, probabilistically
results in an increase in fitness of the population, as a
whole. Subsequent generations tend to result in fur-
ther increases in population fitness, until a predefined
number of generations have occurred or some fitness
level is reached. More detailed descriptions can be

found (Mitchell, 1998; Goldberg, 1989; Holland, 1975,
1993).

2.2 Evolution Strategies

ESs were first introduced in German by Rechenberg
(1965), and the ideas were revived in the early 1970s
(Rechenberg, 1973; Schwefel, 1977). Both are later
cited by Back & Schwefel (1993), written in English.
They were very simple algorithms, employing a simi-
lar representation and use of operators to the GA, but
with a single parent which produced one offspring per
generation by mutation alone. The offspring would
then replace its parent in the next generation, if it had
a better fitness. Moreover, the mutation step size is
defined by a Gaussian-distributed random number,
with a mean of zero and a standard deviation that is
encoded on a different part of the chromosome or gen-
otype. The standard deviation is also mutated in each
generation. This allows the ES to be self-optimizing in
its performance. Unlike most GA approaches, ESs
almost always use genotypes of real numbers.

2.3 Genetic Programming

Genetic programming is a relatively new evolutionary
method that was developed by Koza (1992). To solve
problems, GP evolves whole computer programs, in
the form of trees, not just vectors of values. Koza’s
GP uses Lisp S-expression tree structures. The inner
nodes of these trees represent functions of the pro-
gram, and the leaf nodes represent variables and con-
stants to the functions.

As with GAs and ESs, there is population of solu-
tions (in this case a collection of trees), which are
manipulated in each generation of evolution by cross-
over and mutation to form new trees. Like a GA, these
new trees are then tested for fitness at each generation.
GP can be seen as a method for hypothesis search,
where the most fit solution is the smallest tree that
correctly covers a set of input data, or (as in the con-
text of this paper) a method for evolving programs
such as robot controllers.

2.4 Evolutionary Programming

EP was developed by Fogel, Owens, and Walsh (1966)
in the mid-1960s. In this initial work candidate solu-
tions were represented as finite state machines (FSMs)

182 Adaptive Behavior 11(3)

that were evolved by mutation and selection only.
Crossover is not usually used in EP. A finite state
machine is a directed graph of states, with transition
from one state to another causing a symbol to be emit-
ted. This sequential circuit takes a finite set of inputs,
that define the next state, and the output is a logical
combination of those inputs and the current state of the
FSM. A significant factor in modern EP is that the rep-
resentation structure is designed for the specific prob-
lem domain, for instance real-valued vectors, graphs,
ordered lists, and trees may all be used in different
domains (Spears, Jong, Back, Fogel, & de Garis, 1993).

2.5 The Problem of GEC in Robotics

Having seen the variety of GEC methods, there is one
common issue that is particularly important for evolv-
ing on physical robots: the issue of how to initialize
the GEC method’s population. A random first genera-
tion genotype may lead to the robot being made to act
in a manner that would cause it to damage itself, and it
may require significant time before useful behaviors
are seen; however, if the first generation is seeded
with hand-designed genotypes, the task of evolution
may become minimal, diminishing its usefulness.
After analysis of previous methods, a middle way will
be suggested in Section 6, which helps to mitigate both
these problems.

3 Defining a Method of Analysis

3.1 A Framework for Existing Evolutionary
Robotics Methods

Figure 1 puts the extant research in evolutionary
robotics into a framework that will be used throughout
this paper. Methods for the development of robot con-
trollers are first divided into two groups: one in which
evolution takes place exclusively in a training phase
(the upper subtree), and the other in which evolution
continues throughout the lifetime of the robot (the
lower subtree). Within these groups, the existing types
of simulated versus physical robotics are shown. Pos-
sibilities that have not yet been explored in existing
research are not shown in Figure 1, but are discussed
in Section 7.1 and shown in Tables 1 and 2.

Training phase evolution (TPE): Existing research
that evolves a robot controller during a finite training

phase can be subdivided into four approaches: (i)
development and application take place solely on a
physical robot; (ii) development occurs on a physical
robot in the real world and in simulation, before it is
fully ported to the physical robot; (iii) development
takes place in simulation alone and the resulting
controller is applied to a physical robot, and (iv)
development and application both take place in a
simulated world. Since, as stated above, the focus
here controllers that are evolved on physical robots
at some point, points (iii) and (iv) will not be exam-
ined further (see Section 1.1 for the reasoning on this
point).

Lifelong adaptation by evolution (LAE): Existing
research that evolves a robot’s controller throughout
its lifetime can also be subdivided, but in a slightly
different manner. The difference is due to the iterative
nature of the adaptation, since the learning loop has
been closed and experience now feeds back to aid
adaptation. There are three cases identified from the
literature: (i) the sensory data from a physical robot
are continually used in the evolution of the physical
robot’s controller; (ii) the physical robot’s controller is
evolved from physical and simulated sensory data,
aggregated in some manner and the controller controls
a physical robot, and (iii) the evolution and applica-
tion of the controller both occur in simulation. Again,

Figure 1 A suggested framework for the various types
of evolutionary robotics. The sections marked with ticks
are those being reviewed in detail in this paper.

Walker, Garrett, & Wilson Evolution for Real Robots 183

work of type (iii) will not be further considered
because at no point is the robot controller developed
on a physical robot.

3.2 Criteria For Assessing the Usefulness of
the Approaches

The following set of evaluation criteria, which have
been distilled from a review of the literature, are used to
assess approaches that evolve controllers for physical
robotics. In general, these criteria are concerned with
assessing how well each approach is able to provide a
worthwhile alternative to design by hand, which is the
challenge posed by Mataric and Cliff (1996). The crite-
ria are split into two sections: criteria for good TPE
methods, and criteria for good LAE methods. They will
be applied to each TPE and LAE method.

3.2.1 Criteria for Training Phase Evolution The cri-
teria for assessing the usefulness of TPE methods are
as follows:

Time required for training: The time required for
training must be as short as possible, and in any case
not be prohibitive. The longer the training period, the
less valuable it is compared to the hand-design of a
robot controller. This issue has been discussed by
many researchers, including Mataric & Cliff (1996),
and Brooks (1992).

Generality from the training phase: The training
phase may be carried out in an environment that
approximates the world in which the robot will even-
tually carry out its task; however, no non-trivial envi-
ronments are entirely regular, and if robots are to be
useful in unconstrained surroundings then their con-
trollers will need to be robust and general enough to
make control decisions in circumstances not encoun-
tered during the training phase.

Accuracy and repeatability: The evolved controller
must be able to accurately repeat its training, so that a
given set of sensory inputs will reliably elicit the same
appropriate response. This issue may be in conflict the
criterion of generality above, as discussed by Mataric
and Cliff (1996).

3.2.2 Criteria for Lifelong Adaptation by Evolu-
tion The criteria for assessing the usefulness of LAE
methods are as follows:

Adaptation in real time: The LAE method must be
fast enough to adapt to a changing environment. In a
dynamic world, if a robot takes too long to adapt, the
environment may have changed again before it can
establish a fit response.

Overall improvement in performance: As well as the
ability to adapt to punctuated changes in the environ-
ment, seen as recovery from short-term dips in per-
formance, the controller should also be able to show
an overall increase in performance throughout its life-
time, as it evolves to slower changes in the environ-
ment and adapts to more general control issues.

Interference of the evolutionary process in the robot’s
task: The logistics of implementing the GEC algo-
rithm should not unduly interfere with the robot’s
task. For example, the use of a computer workstation
to host the GEC, requires information to be trans-
ferred to and from the robot during its lifetime. This
may require a pause in activity (for wireless transmis-
sion), the use of a cable tether that can affect the
motion of the robot, or even physical docking with the
computer. If this occurs too frequently the robot’s task
will be interrupted and the robot’s task performance
may degrade, but if it occurs too infrequently the ben-
efits of evolution may be lost. Similar issues arise
with the use of teams of robots that must communi-
cate to transfer genetic material.

4 A Survey of TPE Methods

In order to clearly present the many approaches to the
two parts of TPE being discussed here (parts 1 and 2
on the TPE branch of Figure 1, denoted TPE:1 and
TPE:2), their methods are presented in related groups
as follows:

Training on Physical Robots (TPE:1)
• Early work.
• Evolution and shaping.
• Evolving fuzzy rules for robot control.
• Walking in legged robots.
• Active vision.
• Non-GA GEC algorithms, namely GP and EP.

184 Adaptive Behavior 11(3)

Training on a Mixture of Simulated and Physical
Robots (TPE:2)
• Simulation followed by fine tuning on a physical

robot.
• Interleaving simulation and physical robots.

4.1 The “Physical Robot → Physical Robot”
Form of TPE (TPE:1)

This section examines the application of robot-evolved
controllers to a physical robot, where no use is made of
simulation. Figure 2 highlights where this type of project
fits into the overall structure defined in Section 3.1.

4.1.1 TPE:1—Early Work Until the early 1990s, all
work in evolutionary robotics had used simulation for
evolution, although some workers had tested their work
on physical robots (Grefenstette, Ramsey, & Schultz,
1990; Jakobi, 1994; Jakobi et al., 1995; Gallagher, Beer,
Espenschied, & Quinn, 1994).

One of the earliest attempts at carrying out evolution
entirely on a real robot was made by Floreano and Mon-
dada. They reported the successful evolution of a neural
network for simple navigation and obstacle avoidance
(Floreano & Mondada, 1994) on a Khepera robot, a
robot widely used in evolutionary robotics research
(Mondada, Franzi, & Ienne, 1993). A standard GA was
used to evolve genotypes made up of floating point num-
bers that formed the weights and thresholds of the

robot’s neural network. This method was later applied to
the evolution of the more complex homing behavior
(Floreano & Mondada, 1996b), in which a robot learned
to return to a light source that represented a battery
recharge station. The experiments were successful, with
good solutions being found in few generations.

Time required for training: Although all the experi-
ments carried out by Floreano and Mondada produced
successful results, the time taken to evolve the con-
trollers was very large. The homing behavior took 10
days of continuous evolution, with the physical testing
of solutions on the robot being by far the most time-
consuming factor. The genotypes were tested serially
on a single robot. Given the length of time required, it
raises the question of whether it would not be faster to
hand-design the controllers.

Generality of the controller: Nevertheless, the robust-
ness of the results was encouraging. As part of the train-
ing phase of the grasping behavior experiments, the
robot was first presented with a simple task and evolved
solutions to it, and then it was given a harder task—
some of the cylinders were removed so that they were
harder to find—and remained able to use the previ-
ously evolved abilities to continue grasping cylinders.
Although a drop in fitness was recorded, the GA soon
found good solutions. Once training was complete the
robot performed its task. Further experiments to test the
final evolved behaviors under both easy and hard condi-
tions would have been useful, to show how well the
final behaviors generalized and how accurate they were.

Accuracy and repeatability: The evolved robots were
able to accurately carry out their task after training.
However, no report is made of how repeatable the
behavior of the robots was after training.

4.1.2 TPE:1—Evolution and Shaping Colombetti and
Dorigo report a system they call ALECSYS that used a
form of evolution called learning classifier system
(LCS) and a directed learning method called shaping
to learn rules for carrying out tasks (Colombetti &
Dorigo, 1992; Dorigo, 1995). LCSs use a GA to opti-
mize rules, known as classifiers. An LCS is composed
of three parts (Booker, Goldberg, & Holland, 1989):
(i) a GA which finds new rules to add to a knowledge
base; (ii) a performance system that controls the

Figure 2 The position of Section 4.1 within the structure
of this article, as defined in Figure 1.

Walker, Garrett, & Wilson Evolution for Real Robots 185

behavior of a robot using rules, and (iii) an apportion-
ment of credit system which evaluates the rules used
by the GA and the performance system. Shaping is an
approach to learning that uses a human trainer whose
role is to direct the learning process, in this case by
presenting increasingly complex learning goals over
time until the final, complex goal is reached.

The ALECSYS experiments were performed on a
robot known as AutonoMouse. Its task was to follow a
moving light source. First the robot learned to move
towards a stationary light by wandering around ran-
domly, and being rewarded when it approached the
light. In the next phase the system was specifically
presented with situations it had not learned in the first
phase, for example if the light was not easily accessed,
and trained further. In the final phase the robot learned
to move towards a moving light source.

Time required for training: Colombetti and Dorigo
concluded that shaping significantly speeded up the
learning process (although the actual amount of real
time taken is not reported) as the system can be delib-
erately pointed in the right direction. This is a form of
directed search. The aim is to prune unprofitable ave-
nues for learning and to cut down the search space.
However, this means that a trainer must be present and
alert at all stages of the learning process.

Generality of the controller: Further experiments
looked at the effect of altering the robot to see how
quickly the system evolved to cope. For example in one
experiment an “eye” (i.e., a light sensor) was removed.
This is similar to the way in which Floreano and Mon-
dada changed the robot’s environment in their work. As
with that work, ALECSYS recovered well in these situa-
tions. Again, once this training was complete, there
were no further experiments to explore how well the
system continues to operate under varying conditions.

Accuracy and repeatability: The evolved robots were
able to accurately carry out their task after training.
However, as in the work reported in the previous sec-
tion, no report is made of how repeatable the behavior
of the robots was after training.

4.1.3 TPE:1—Evolving Fuzzy Rules for Robot Con-
trol Matellan and others present a GA that evolves a
fuzzy controller for a Khepera robot, which was

required to navigate and avoid obstacles (Matellan,
Molina, Sanz, & Fernandez, 1995; Matellan, Fernan-
dez, & Molina, 1998). Fuzzy controllers use fuzzy rules
that take into account the inaccuracy of human expres-
sions such as “the wall is quite far away.” A fuzzy rule
might be expressed, “if the obstacle is quite near, then
move away fairly fast.” A given sensor reading maps
on to a fuzzy subset (such as “quite near”), the fuzzy
rules fire, and the result is defuzzified to give a real
value for an actuator.

In their project Matellan et al. evolved fuzzy rules
on a workstation and then downloaded each genotype
onto the robot for testing. The resulting fitness was
fed back into the GA for computation of the next gen-
eration. The findings were encouraging in that the
approach found increasingly good solutions over suc-
cessive generations. However, the controllers produced
were found to be very similar to hand-designed ones
and the evolutionary process was lengthy.

Time required for training: 100 individuals were
tested on the Khepera over 100 generations, with each
genotype controlling the robot for 20 s, totaling at
least 55 h of continuous evolution time (excluding
robot failures and other incidents); almost certainly
longer than it would take to design such rules by hand.

Generality of the controller; accuracy and repeatabil-
ity: No reports were made of how well the controller
was able to generalize to new environments after
training, nor about how repeatable the results were. In
terms of accuracy the controllers were able to carry
out their task, and as the solutions were similar to
hand designed ones it is likely that their performance
was also similar.

4.1.4 TPE:1—Walking in Legged Robots The de-
velopment of efficient gaits for legged robots is a
problem that has occupied many researchers, and
GECs (mostly GAs) have become a popular approach.
Here two example projects are discussed, one that
evolves a quadruped gait and one that evolves a hexa-
pod gait. A group of researchers working with the Sony
quadruped, AIBO, have reported success using unde-
fined GEC to evolve fast gaits (Hornby, Fujita, Taka-
mura, Yamamoto, & Hanagata, 1999; Hornby et al.,
2000). In early experiments, gaits were evolved on flat
carpet, but were found not to generalize well to new

186 Adaptive Behavior 11(3)

surfaces; subsequent experiments therefore used an
uneven floor surface during evolution. This worked
well but it was found that the experimenters had to be
careful to get the level of unevenness right—the floor
needed to be uneven enough to make the results ro-
bust, but not so rough as to make robot fall over, or to
otherwise ruin the experimental procedure.

Time required for training: In these experiments each
run of 500 generations took about 25 h to complete.
For this reason the workers suggest using physical
robots only when building a simulation would be too
difficult (and therefore time-consuming in itself), and
when fitness evaluation is fast, which is rarely the
case with physical robots.

Generality of the controller: It was found that once
uneven floor surfaces were used during evolution, the
resulting gaits generalized well to new surfaces such
as carpet and wood, and in addition they were faster
than hand-designed gaits.

Accuracy and repeatability: The robot was able to
walk accurately, but again there is no report of any
experiments that considered the repeatability of the
evolved behavior.

Incremental learning was employed in the train-
ing phase by Lewis, Fagg, and Solidum (1992) for
gait-learning in a hexapod robot. A simple task was
learned first, that of moving a single leg, followed by
forming coordination between legs to evolve the walk
itself. The genotypes were tested on the physical robot,
but evaluated by hand, which is unusual because of the
subjective nature of this approach, as well as the level
of attention required by the evaluator.

The gait that evolved was a tripod gait, where the
left-front and left-back legs move with the right-mid-
dle leg and vice versa. Also, a surprising finding was
that the robot walked backwards more efficiently than
forwards in the individuals produced by the GA. A
relatively small number of generations were needed to
produce good gaits, with a population of just ten indi-
viduals. It is useful to note that some of the best solu-
tions—ones that had the robot walking backwards—
were unlikely to have been hand-designed, as this was
unexpected by the experimenters.

Time required for training: As a small number of indi-
viduals were used in each generation the time to

evolve would have been smaller than similar projects.
This small population size was probably made possi-
ble by the fact that the experimenter evaluated the
individuals by hand although this may have led to
some increase in evaluation time.

Generality of the controller; Accuracy and Repeata-
bility: The robot was able to walk successfully after
training, but there is no report of how repeatable this
behavior was, nor how generalizable.

4.1.5 TPE:1—Active Vision Active vision, or active
perception, is the use of motor actions to find sensory
patterns that are easy to discriminate—see Bajcsy
(1988) in Nolfi & Floreano (2000)—so that the so-
called perceptual aliasing problem can be solved. For
mobile robot vision, this means that when a number of
different objects look identical, from a given position,
the robot can move to another viewing position in
order to disambiguate the objects. The active vision
system, introduced by Kato & Floreano (2001), was
implemented on a physical robot with a very simple
task—moving around an arena whilst not hitting the
walls (Marocco & Floreano, 2002). The active vision
system took information from a very small part of the
whole field of vision (48 by 48 pixels). This small
area of focus they called the retina. The retina could
be moved around the image, and zoomed in and out.
A neural network was evolved on a Koala robot,
equipped with a camera. The neural network control-
led the pan and tilt of the camera and the motor
speeds.

The best resulting genotypes were successful in
avoiding obstacles, in this case walls. They used edge
detection to recognize the meeting of the arena wall
and the floor, and “visual looming,” or the correlation
between the size of the white wall in the camera view
and the speed of motors moving the robot. The result
was the ability to perform wall-avoidance.

Time required for training: A population of 40 indi-
viduals was evolved for just 15 generations, and
because of this small population size and the number
of generations, training took only ~1.5 h, much less
than many other projects.

Generality of the controller: No experiments are
reported which look at the issue generality after train-

Walker, Garrett, & Wilson Evolution for Real Robots 187

ing. It would have been interesting to see if further
training would be necessary before the robot could
perform the same behavior in a different environment,
and if so, how much further training.

Accuracy and repeatability: The authors report that
although the evolved robot was able to satisfactorily
carry out its task, it was not as good as a simulated
robot in training.

4.1.6 TPE:1—Non-GA GEC Algorithms In evolutio-
nary robotics, GP is a common alternative to a GA,
and was used by Nordin et al. for the evolution of var-
ious controllers for a Khepera robot. The controllers
took the form of computer programs that were manipu-
lated by the GP and tested on a robot. The first experi-
ments evolved a typical obstacle-avoidance behavior
(Nordin & Banzhaf, 1995).

The GP was used to evolve machine code, which
meant that the process was memory efficient, so that it
could take place entirely on physical robots. The fit-
ness function was also very simple, and was based on
abstractions of “pleasure” and “pain,” such that high
values from the IR sensors (indicating close proximity
to an obstacle) produced pain, and high, similar motor
speeds (indicating fast forward movement) gave
pleasure. In order to speed up the evolutionary proc-
ess, just four individuals from each generation were
tested on the robot and subsequently manipulated by
the GP. In addition, each test run was kept short.

A number of more complex behaviors were then
successfully evolved using this technique, including
following moving objects (Banzhaf, Nordin, & Olmer,
1997) and action selection strategies (Olmer, Nordin,
& Banzhaf, 1996).

A later version of the system was presented that
included a memory of past experiences. This approach
was used to learn obstacle avoidance again (Nordin &
Banzhaf, 1997), and later wall-following (Nordin
et al., 1998). The addition of a memory significantly
improved the learning process, with perfect obstacle-
avoidance being learned on average in 50 generations,
and the more difficult task of wall-following being
perfectly learned, on average, in 150 generations.

Time Required for Training: The measures taken to
speed up the process meant that more generations
could be produced in a short time, and it was found

that the system successfully evolved obstacle-avoid-
ance behavior in just 40–60 min (equivalent to 200–
300 generations).

Generality of the controller: The controllers evolved
for obstacle avoidance were put into new environ-
ments after training to test for robust generalization,
and proved to perform well.

Accuracy and repeatability: The evolved robot was
able to carry out the tasks very accurately. Although
tests were done to see how repeatable the evolutionary
process was in terms of the quality of the controllers it
produced, no experiments are reported which look at
how repeatable the behavior of the individual control-
lers was.

ESs have also been found to be a viable, and pos-
sibly better alternative than GAs for evolutionary
robotics. Salomon used an ES (with an added crosso-
ver operator) to evolve two different controllers for a
Khepera involved in simple navigation and obstacle
avoidance (Salomon, 1996, 1997).

Salomon chose to use an ES because they perform
better at problems involving epistasis. Epistasis occurs
when two or more fitness parameters interact in a non-
linear fashion, as is the case in most robotics applica-
tions. ESs also tend to converge more quickly on
optimum solutions than GAs, and are therefore advan-
tageous in situations using physical robots, where the
time to obtain a (reasonable) solution is important.

Salomon used a similar experimental setup to that
used by Mondada & Floreano (1995); Floreano &
Mondada (1996b), so that he could compare his results
using an ES with their results using a GA. Two neural
network controllers were evolved:

1. A controller inspired by Braitenberg vehicle 3-c
(Braitenberg, 1994), reported by Salomon (1996).

2. The evolution of receptive fields (Salomon, 1997).
Receptive fields are more complex controllers
requiring more parameters for the ES to optimize,
(see Moody & Darken, 1988 for details).

Time required for training: Salomon found ESs to be
an order of magnitude quicker at finding an equally
good solution as the solutions produced by the GA
used by Floreano and Mondada. This is a significant
speed up of the training phase, showing that ESs have

188 Adaptive Behavior 11(3)

a lot to offer evolutionary robotics, although very few
researchers have used them. In Section 6.2 another
project using an ES is reviewed.

Generality of the controller: There are no experiments
reported that consider the generality of the evolved
robot controllers.

Accuracy and repeatability: It was found that ESs
worked well for both types of controller considered,
showing that they can scale up from simple ones like
the Braitenberg controller. However, as before, no
experiments are reported which look at the issue of
repeatability of the resulting controllers.

4.2 The “Simulated and Physical Robot →
Physical Robot” Form of TPE (TPE:2)

This section examines methods of TPE which used
both a physical robot and simulation in training,
before porting to a physical robot. The aim of combin-
ing physical robots and simulation in training is to
mitigate the problems inherent in evolving on a simu-
lation alone, such as evolving solutions that do not
map to the real world, and the problems of using phys-
ical robots, such as the time taken to train and the cost
of possible damage to the robot due to highly unfit ini-
tial genotypes. Figure 3 shows where this section fits
into the framework defined in Section 3.1.

4.2.1 TPE:2—Simulation Followed by Fine Tuning
on a Physical Robot The work of Miglino and col-
leagues began by quantitatively analyzing the differ-
ences between the results of training in simulated and
physical worlds (Miglino, Lund, & Nolfi, 1995a). As
a result they developed a method that performed most
of the evolutionary training phase in simulation, fol-
lowed by a final fine-tuning of the behaviors on a
physical robot (Miglino et al., 1995b). This approach
was used to evolve a neural network controller for a
Khepera robot that wandered its environment and
avoided obstacles. The majority of evolution occurred
in a simulation that was carefully built using sampled
data from the physical robot’s sensors. The GA was
then run for 300 generations in the simulation, but
when the results were transferred onto the physical
robot, a drop in performance was recorded, so a fur-
ther 30 generations were run in the real world.

Time required for training: The initial 300 generations
took only an hour in simulation, but with 30 further
generations being needed and each generation being
made up of 100 individuals, this may have taken a sig-
nificant amount of time, although the exact details are
not reported. The time taken to sample the environment
using the Khepera’s sensors must also be taken into
account, but again it is likely that this was time well
spent, as a less accurate simulation would have led to
more generations being required on the physical robot.
However, it is likely to compare very favorably with the
work of Floreano & Mondada (1996b) which took 10
days for the evolution on the physical robot.

Generality of the controller: No experiments are
reported that explored the generality of the evolved
controllers. The simulation was constructed to mimic
a specific type of environment, therefore the robots
evolved in it may not generalize well to different envi-
ronments.

Accuracy and repeatability: The results in terms of
the accuracy of performance of the final evolved neu-
ral networks were good, but again, no experiments
were reported which looked at the repeatability of
their performance.

4.2.2 TPE:2—Interleaving Simulation and Physical
Robots Wilson and others (Wilson, King, & Hunt,
1997; Wilson, 2000) introduce a methodology in

Figure 3 The position of Section 4.2 within the structure
of this paper, as defined in Figure 1.

Walker, Garrett, & Wilson Evolution for Real Robots 189

which evolution in simulation and the real world are
interleaved. The evolutionary process was split into
distinct phases with some phases in simulation and
some on the physical robot. Firstly, primitive behaviors,
such as move-forward and turn-left, were designed and
tested on the physical robot, then these basic behav-
iors were randomly concatenated to create sequences
of behaviors. These sequences were evaluated for fit-
ness and could, at a later stage, be used as chunks in
larger-scale sequences.

The robot’s task was to travel a maze to a goal,
and the evolutionary process combined simple behav-
iors into sequences. The fitness at each phase was
based on the robot’s ability to reach the goal in a
maze. The first stage introduced sufficient variation
into the population, using mutation as the main opera-
tor. The second stage reduced the number of individu-
als in the population and used crossover as the main
operator. The third phase tested the fittest population
members on the physical robot. The genotypes run on
the robot were evaluated, and the best ones were
chunked (i.e., a set of genotypes were treated as a sin-
gle entity), so that they could later be incorporated in
the population through the mutation operator. The
process was then repeated, beginning from evolution
with a high mutation rate.

Time required for training: The use of simulation for
part of the training meant that training was faster than
if real robots had been used throughout. However, the
repeated re-testing of behaviors on the physical robot
required frequent involvement by the experimenter.
This compares with the approach of Miglino et al.
which needed significant human input to create the
simulation in the first place, but after that just a one-
off phase of evolution at the end of the process, and
the simulated world could certainly be used again
for different tasks (if not different environments),
whereas the only part of the training that would not
need to be repeated in Wilson’s approach would be the
creation of basic behaviors.

Generality of the controller: Wilson et al. did not test
the generality of their final controller in different envi-
ronments to the physical training environment.

Accuracy and repeatability: The accuracy and relia-
bility of the resulting behavior sequences was tested
by running them many times in the same environment

and recording how consistently they performed. It was
found that although they reliably found the goal, they
were not very accurately repeatable.

4.3 Summary of TPE Methods

This section has considered ten projects which have
used TPE. Each of these had a different approach and
differed in how well they fulfilled the criteria defined
in Section 3.2.

Using physical robots for evolution is often more
time consuming than using simulation, and for this
reason only relatively simple worlds and/or tasks have
been investigated when physical robots have been
used. The use of alternative evolutionary algorithms
to the usual GAs is promising in this respect, as shown
by the work using ESs by Salomon (Salomon, 1996,
1997). It has also been shown with the work using GP
by Nordin, Banzhaf, and others (for example Nordin
& Banzhaf, 1995), that changes can be made to the
method, such as not testing all genotypes, to signifi-
cantly increase speed of development.

Using a mixture of simulation and physical robots
is another promising approach, but the simulations
must be accurate if a real robot is only used at the end
of the training phase for fine-tuning, as by Miglino
et al. (1995a). Interleaving simulated and real runs
during the evolutionary process, as by Wilson et al.
(1997), is a good way to address this issue, as the
robot is being frequently tested and re-adapted to the
real world, without having to spend too long in it;
however, this requires heavy involvement by the
trainer who must be almost continually present.

Most of the projects did not test their evolved
controllers in new worlds, to assess their robustness in
the face of new environments after training has
ended; therefore no statement can be made about the
usefulness of the evolved solutions outside of the
niches in which they were evolved. One example where
researchers did look at the issue of generalization after
training was by Hornby et al. evolving quadruped gaits,
who found that a more difficult training environment
produced a more generalized solution (Hornby, Lipson,
& Pollack, 2001; Hornby & Pollack, 2001).

All the authors whose projects have been reviewed
here report that their methods produced controllers
that could satisfactorily carry out their tasks, although
Nolfi and Marocco’s robot, with evolved vision, did
not perform as well as a simulated robot in training

190 Adaptive Behavior 11(3)

(Nolfi & Marocco, 2000). Only a few have specifi-
cally addressed this issue by comparing their results
with hand-designed controllers, or to other evolution-
ary results. When reports of this nature have been
made they are mostly favorable. In Salomon’s work,
using an ES, the results were compared to Floreano and
Mondada’s early work (Floreano & Mondada, 1994)
and found to be as good, but produced much faster. In
a comparison between gaits evolved for the Sony
AIBO, Hornby et al. found the evolved gaits to be bet-
ter than hand-designed ones. However, in their work
evolving fuzzy controllers, Matellan et al. (1995,
1998) did not see an improvement over hand-design
when using a GA.

5 A Survey of “Lifelong Adaptation by
Evolution” (LAE)

As with the TPE section, the work in each part the LAE
branch of Figure 1 has been grouped by research group
or type of work. There are fewer examples of LAE than
TPE, and most LAE has been done using some combi-
nation of physical and simulated robots. At the end of
the section, the projects are discussed in the light of the
evaluation criteria given in Section 3.2.2. The follow-
ing groupings of methods are examined:

LAE in Physical Robots (LAE:1)
• Evolution embodied in a population of robots.
• Co-evolution.

LAE in Simulation and Physical Robots (LAE:2)
• “Anytime learning.”
• “Anytime learning” for hexapod gaits.
• Evolving morphology and control.

5.1 The “Physical Robot ↔ Physical Robot
Form of LAE (LAE:1)

The position of this section, within the framework
defined in Section 3.1, is shown in Figure 4.

5.1.1 LAE:1—Evolution Embodied in a Population
of Robots Using GAs, Watson et al. have explored
how physical robots might continually adapt to a chang-
ing environment (Watson, et al., 1999; Watson, Ficici, &
Polllack, 2000; Ficici et al., 1999). They name their

approach “embodied evolution.” A group of eight simple
robots formed the GA’s population, where each robot
embodied a single genotype. The GA used was a version
of Harvey’s microbial GA (Harvey, 1996, unpublished
work available at: ftp://ftp.cogs.susx.ac.uk/pub/users/
inmanh/Microbe.ps.gz). The behavior of a robot was
defined by its genotype, and each robot had a virtual
energy level that indicated the fitness of its genotype.
The task was to find a light source, and the virtual energy
level (fitness) increased when the light was found.

Robots could mate when they met by broadcast-
ing a mutated version of one of its genes, the rate of
broadcast being proportional to its energy level, so a
more fit robot was more likely to mate successfully.
When a robot received a broadcast there was a proba-
bility, also based on its energy level, that it would
overwrite its genotype with the mutated version of the
other robot’s genotype, so that a more fit robot was
less likely to have its genotype overwritten.

The GA used required only minimal computation
because the fitness function was simple; the amount of
information transmitted was low (just a single mutated
gene in each attempted mating), and the only evolu-
tionary operator used was mutation. This means that,
unlike many GA implementations, this one can practi-
cally be used on physical robots, and it is more likely
to scale up to more complex tasks. It is especially
appropriate for multi-agent tasks that naturally bring
the robots into contact with each other for mating.

Figure 4 The position of Section 5.1 within the structure
of this paper, as defined in Figure 1.

Walker, Garrett, & Wilson Evolution for Real Robots 191

A similar project to that by Watson et al. has been
reported by (Nehmzow, 2002). The major differences
between the two projects are that there were only two
robots in Nehmzow’s experiments compared to eight
in Watson et al.’s; Nehmzow’s robots learned a larger
number of behavioral competencies, and crossover
rather than mutation was used. The robots were pre-
programmed with basic behaviors such as obstacle
avoidance. These pre-programmed behaviors were
then improved by evolution, and new behaviors, such
as phototaxis, were learned. As with Watson et al.’s
work, the robots would attempt to mate when they
met, after a period of testing their genotype. Each
robot would transmit its genotype and that genotype’s
fitness, and the likelihood of crossover occurring
between a robot’s current genotype and the new one
depended on the fitness of the two genotypes. In addi-
tion, each robot held a copy of the best genotype it had
found so far which it would use if the GA did not pro-
duce a better genotype. It was found that this method
of evolution optimized the behaviors quickly.

Watson’s and Nehmzow’s methods will be com-
pared to the LAE criteria together as they are very
similar approaches.

Adaptation in real time: Neither project tested the
response of the evolutionary method to a dynamic
environment. For both projects, results are presented
that show steady increases in performance from the
first generation until the behavior competence had
been achieved, but there is no indication of the actual
amount of time it took to adapt the robot controllers to
their environments. However, Nehmzow found that
his system could adapt to new tasks successfully,
although the time taken to adapt is not presented.

Overall improvement in performance: The speed with
which evolution can progress in this type of method is
determined by how often the robots come into contact
with one another. For tasks and environments where
robots will frequently come into mating range with
each other, the speed of evolution will be faster than
when robots are not in often in close proximity.
Although results are presented that show steady
increases in performance over time for the two
projects, there is no indication of the actual amount of
time it took to adapt the robot controllers to their envi-
ronments, nor is there any indication of how much the
robots continue to adapt over the long term.

Interference of the evolutionary process in the robot’s
task: As long as the robots will naturally come into con-
tact with one another during the progress of their task,
and because the amount of genetic material to be trans-
ferred during each “mating” was small (especially in
Watson’s work), the method used in these two projects
interfered very little in the task of the robots.

5.1.2 LAE:1—Co-evolution Co-evolution is the
evolution of two or more agent behaviors which inter-
act with each other, usually competitively, so that
changes in the behavior of one agent drives further
adaptation in the other, and evolution continues in an
open-ended fashion.

In robotics the most widely studied case concerns
a prey robot and a predator robot, for example Koza
(1991) and Reynolds (1994). The predator tries to
capture the prey and uses a GEC to find better ways to
catch the prey. At the same time, the prey adapts by
GEC, to avoid the predator. As each agent finds new
ways to achieve their goal, so each must evolve new
ways to frustrate the other. A similar idea is the evolu-
tion of strategies for playing robot soccer, where
robots must learn to work as a team and compete with
an opposing team to score, for instance Ostergaard and
Lund (2003). Co-evolution is an inherently lifelong
process, but has rarely been implemented on real
agents. One example where real robots have been used
is an on-going project by Floreano and others (Flore-
ano et al., 2001).

In their work Floreano et al. used two Khepera
robots, one as the predator and one as the prey. The
predator had to catch the prey by touching it. A work-
station was used to carry out all the GA computation,
and each robot received the next genotype after the
end of each trial. Trials ended when the predator
caught the prey.

In the first few generations the predator scored
low and the prey high, because the predators were not
very good at catching the prey; however it took just 20
generations for the two agents to become more evenly
matched. The authors suggest that competitive co-
evolution can be used to overcome the “bootstrap”
problem: i.e., when dealing with a complex task it is
unlikely that an individual in the first, randomly gen-
erated generation will have even part of a solution to
the task, so the whole generation receives a low fit-
ness, meaning there is little selection pressure. Incre-

192 Adaptive Behavior 11(3)

mental approaches can solve this problem but require
varying amounts of human intervention. Competing
robots, however, have been shown to produce increas-
ingly difficult challenges for each other, without any
outside help (Nolfi & Floreano, 1998). An indefinitely
increasing performance is not guaranteed because the
robots tend to cycle through the same solutions.

Adaptation in real time: Both robots were able to
adapt quickly to the behavior of the other robot, how-
ever the actual amount of time taken for adaptation to
occur is not reported (just the fact that it took 20 gen-
erations).

Overall improvement in performance: An overall
improvement in performance was seen for the first 20
generations, but after that oscillations in performance
set in, with first one, then the other robot performing
better, and neither improving its performance overall.

Interference of the evolutionary process in the robot’s
task: The evolutionary process took place on board a
computer to which the robots were tethered through-
out experimentation; this would not be practical for
most real world applications. However, the tethering
was due to the small amount of memory and processor
power on the robots themselves and could be avoided,
either by using radio links or larger robots.

5.2 The “Simulated and Physical Robot ↔
Physical Robot” Form of LAE (LAE:2)

The position of this section, within the framework
defined in Section 3.1, is shown in Figure 5.

5.2.1 LAE:2—”Anytime Learning” The foundations
of anytime learning is SAMUEL, introduced by Grefen-
stette, Ramsey and Schultz (Grefenstette et al., 1990).
SAMUEL is a learning system that learns reactive
behaviors defined by stimulus–response rules; it has
two parts. Firstly, a learning system that uses a GA
running in an off-board simulation to continuously
adapt the robot to its environment and task. Secondly,
an execution system that uses the rules provided by
the learning system to control a robot. The system has
been implemented on physical robots successfully on
tasks such as collision avoidance (Grefenstette &
Schultz, 1994) and missile evasion (Schultz & Grefen-

stette, 1992). However, SAMUEL’s simulator was not
updated with information from the robot’s interaction
with the world, making it much harder for it to adapt
to new situations.

Another version of SAMUEL has been designed to
perform anytime learning (Grefenstette & Ramsey,
1992), which is an algorithm that receives information
from the real world to allow evolutionary adaptation
to update the simulator. A monitor was added to the
execution system, which notified the learning system
whenever the world had changed, and the simulation
environment would then be changed accordingly. The
ability to change the simulation in which learning
takes place means that the robot can adapt to new
environments that were not initially designed into the
learning system, making the SAMUEL architecture
much more robust.

SAMUEL has been tested using a “cat and mouse”
scenario: the cat robot must learn to keep the target
mouse robot in range without being detected; the
mouse robot moves randomly until it detects the cat
robot, when it runs away at high speed. Experiments
were carried out to discover how quickly the system
could adapt to a changing environment, by altering the
speed of the mouse robot. Whenever the monitor
detected a change in the speed of the mouse it updated
the simulation with the new information, and when-
ever the simulation found a better strategy than the
one currently being executed it passed that to the

Figure 5 The position of Section 5.2 within the structure
of this paper, as defined in Figure 1.

Walker, Garrett, & Wilson Evolution for Real Robots 193

robot. A comparison was made between a robot with
and without this form of adaptation. The results
showed anytime learning had a distinct advantage.

A further extension of SAMUEL involved the addi-
tion of case-based reasoning (Ramsey & Grefenstette,
1993). Good genotypes were saved, and stored with
description of the environment they performed well
in. When the environment changed, the GA was
restarted, and the new population seeded with saved
genotypes from similar environments to the new one,
as well as with default strategies that were known to
perform well in a range of situations. The method was
successful, but the robot had to be able to recognize
when the environment had changed, and be able to
compare that environment to previous ones, a difficult
problem for most robots.

Adaptation in real time: The robot was able to adapt
to the changing speed of the mouse, and continued to
be able to catch it during experimentation. The actual
amount of time it took to adapt is not reported.

Overall improvement in performance: Tests showed
that sometimes when the environment changed to
become more difficult (when the mouse sped up sig-
nificantly), the robot did not adapt to reach previous
levels of performance before the next change in the
environment. However, the robot may not be able to
perform as well when the mouse moved more quickly,
however much it adapts. At other times the fitness for
a given environment (or mouse speed) exceeded pre-
vious levels, indicating that the system was producing
an overall improvement.

Interference of the evolutionary process in the robot’s
task: The robot and the learning system communi-
cated with each other at intervals which meant that the
robot’s task would be interrupted. This interruption
could be significant if the robot was tethered, or
needed to move to be within communication range of
the workstation, but otherwise would probably not
cause significant problems for task execution. It is
worth noting, however, that as an environment changed
more frequently, more communication would be
required, both from the robot informing the monitor of
change, and from the learning system updating the
robot controller.

5.2.2 LAE:2—”Anytime Learning” for Hexapod
Gaits Parker and Rawlins devised “cyclic GAs” for
the evolution of gaits (Parker, 1998; Parker & Rawl-
ins, 1996). These encode genotypes as a circle with
two tails, rather like a “∝” symbol, where the tails can
alter in length. This replaced the standard linear chro-
mosome. These partially cyclical GAs were so
designed because the execution of a gait consists of
cycling through a set of actions, with the two tails
encoding the initial and final action sequences.

In order for the robot to continually adapt to a
changing environment Parker altered a version of
Grefenstette et al.’s anytime learning, which they
called “punctuated anytime-learning” (Parker & Mills,
1999; Parker, 2000b). Evolution took place in simu-
lation, with the best solution sent to the physical
robot periodically, and information from the robot
being used to alter the learning process by initiating
changes to the GA (rather than the simulation as in
SAMUEL).

After a number of generations, all the genotypes
in the current population were tested on the physical
robot and, if there were discrepancies between the fit-
ness a genotype gained in the simulation and the fit-
ness it gained in the real world, a fitness “bias” was
calculated for it. This bias was given by a genotype’s
fitness on the real robot divided by its fitness on the
simulated robot. In subsequent generations, a geno-
type’s bias is the average of its parents’ biases. A gen-
otype’s fitness is given by multiplying its initial
fitness by its bias.

Initial work using this system was performed on
simulated robots but more recent results from testing
the method on a physical robot (Parker, 2000a; Parker.
& LaRochelle, 2000) were encouraging. However, the
evolutionary process had to be simplified (and weak-
ened) because it interrupted the robot in achieving the
task. This was done by reducing the GA’s population
size and number of times the genotypes were evalu-
ated, and by cutting down the number of times the
simulation performance was tested.

Subsequent work using punctuated anytime learn-
ing has looked at: Incrementally evolving individual
leg controllers (Parker, 2003a); adapting to a different
environments (Parker, 2003b) and the evolution of a
simulated team of legged robots (Parker & Blumen-
thal, 2002).

194 Adaptive Behavior 11(3)

Adaptation in real time: Punctuated anytime learning
has been used to adapt gaits to changes in an environ-
ment (Parker, 2003a); however, no clear indication of
the amount of time it took to readapt after the environ-
ment changed was reported—only that after 200 gen-
erations performance was still improving, but had not
reached previous levels.

Overall improvement in performance: An improve-
ment in performance was seen after environmental
change; however, there are no long term experiments
reported which look at repeated changes to the envi-
ronment and their effect on a physical robot’s per-
formance.

Interference of the evolutionary process in the robot’s
task: The amount of interference with a robot’s task is
similar to that for Grefenstette’s Anytime Learning.
Using radio for transmission reduces the amount of
interference, but the more changeable an environment,
the more interruptions will be needed.

5.2.3 LAE:2—Evolving Morphology and Control
Field programmable gate arrays (FPGAs) are recon-
figurable electronic circuits made up of logic gates
that can be configured by GEC. The first use of
FPGAs and evolution to control a robot was made by
Thompson in 1995 (Thompson, 1995), who evolved
wall-avoidance behavior in a wheeled robot.

Keymeulen et al. have more recently evolved an
FPGA to control a visually guided robot (Keymeulen,
Iwata, Kuniyoshi, & Higuchi, 1998a, b). The robot’s
task was to follow a ball whilst avoiding obstacles,
and it was expected to adapt to new situations such
as movement of obstacles and loss of individual sen-
sors. Two FPGAs were used—one executed the cur-
rent best genotype and one used a simulation of the
world to perform evolution, so that although evolu-
tion took place in a simulation, the simulation was
run on the robot itself. The model of the world used
in the simulation was built by the robot as it moved
around, and after every ten generations the best gen-
otype to date was transferred to the first FPGA for
execution.

Adaptation in real time: It was found that this method
could evolve fit controllers in just 5 min, and that it
could thus adapt to new situations very quickly.

Overall improvement in performance: The system
was able to adapt to environmental changes, and
showed an overall increase in performance over time.

Interference of the evolutionary process in the robot’s
task: Using a simulator for evolution, and situating
that simulator onboard the robot itself allowed the
robot to refer to simulation without interrupting its
task significantly, as no medium or long distance
communication was needed with a computer work-
station.

5.3 Summary of LAE Methods

This section has considered five projects using LAE,
either on physical robots alone, or on a mixture of
simulated and physical robots.

For real-time evolution to be useful, it needs to be
able to adapt quickly to changing environments, since
different environments will present different chal-
lenges. Some researchers have failed to investigate
this issue; however, Nehmzow’s work with a team of
robots showed how an embodied GEC can learn new
tasks (Nehmzow, 2002), Ramsey and Grefenstette
showed how SAMUEL adapted to changes in one envi-
ronmental variable (Grefenstette & Ramsey, 1992),
and the work of Floreano et al. showed reasonably
high-speed reaction to new conditions (Floreano, Nolfi,
& Mondada, 2001).

In all the examples looked at, evolution produced
an overall, long-term improvement in performance,
although comparisons are rarely made between robots
using LAE methods, and robots that did not use them.
The work with SAMUEL is one exception to this, and it
was shown that the anytime learning method did pro-
vide improvements in performance.

Many of the approaches discussed have required
some level of interference by the chosen GEC in the
task. In Parker et al.’s work using punctuated anytime
learning for hexapod gaits (Parker & Mills, 1999;
Parker, 2000a), the robot was required to be in contact
with the workstation performing the computation, if
only occasionally. The work by Watson and others
(Watson et al., 1999, 2000; Ficici et al., 1999) and Neh-
mzow has addressed this issue in part by embodying
evolution in a team of robots, making evolution a multi-
agent task. Alternatively, using a simulator for evolu-
tion, and situating that simulator onboard the robot
itself, as by Keymeulen et al. (1998a, b), allowed a

Walker, Garrett, & Wilson Evolution for Real Robots 195

simulation to be used without interrupting the robot’s
task unduly.

6 Combined TPE and LAE Approaches

In this section, two projects are reviewed that have
combined TPE and lifelong adaptation. The first
project only uses evolution for adaptation during
training, and then uses non-evolutionary, “plastic neu-
ral networks” to continue adaptation after training.
The second project brings together the both the TPE
and LAE branches of Figure 1 in a way that uses evo-
lution in both sections of its method. The criteria are
applied to both projects together in Section 6.3.

6.1 The Approach of Uzrelai and Floreano

In order to give evolved robots robustness in the face
of new environments, Uzrelai and Floreano used a GA
to evolve plastic neural networks (PNNs) during a
training phase (Floreano & Urzelai, 2000a). After
training, the PNN allowed adaptation to continue over
the lifetime of the robot. The genotypes encoded four
modification rules (plain Hebb, post-synaptic, pre-syn-
aptic, and covariance) for the PNN. Each rule could be
altered genetically. When a genotype was tested on a
robot the synaptic strengths of the neural network were
set to random values, and synaptic strengths of the PNN
were adapted over the course of the run according to
the modification rules encoded in the genotype.

Introduced by Floreano & Mondada (1996a), the
method was first used to learn navigation and obstacle
avoidance. In Floreano & Urzelai (2001) the learning
rate of this approach was compared to that of a normal
neural network plus a GA, and they found that it took
fewer generations, of smaller populations, to evolve
good solutions. In Urzelai & Floreano (2000a) the same
was found for the more complicated light-switching
task. This involves placing a robot in a rectangular
environment with a light at one end and a switch for the
light at the other end and the robot has to switch the
light on and then move underneath it to gain fitness.

A series of experiments tested how well the
evolved robots could adapt to new environments after
the training phase:

• Moving from simulation to reality. Robots were
evolved in simulation, then transferred to reality
(Urzelai & Floreano, 2000b).

• Changing spatial relationships. The position of
the light was changed in the light switching task
(Urzelai & Floreano, 2000b).

• Changing the robot platform. A controller evolved
on a Khepera was transferred to a larger robot with
different sensor capabilities (the Koala robot),
again for the light switching task (Floreano &
Urzelai, 2000b).

In all cases it was found that the evolved controllers
transferred to the different environments quickly and
successfully.

6.2 The Approach of Walker et al.

Work by Walker (Walker, 2003; Walker & Wilson,
2002) investigated the relative contributions of TPE
and LAE to robot performance. A standard GA was
used for TPE, and a bespoke, minimal ES was used
for LAE. The training phase was intended to produce
a robust robot controller that would be general to
many situations, including several new ones, without
further adaptation. The LAE provided the ability to
continue to improve performance, and the ability to
evolve solutions to situations beyond the generality of
the controller produced by TPE.

TPE took place over 500 generations on a simu-
lated Khepera robot. The robot’s task was to find a
goal quickly, whilst avoiding obstacles. A GA was
used to optimize a set of Arkin’s behavioral schemas
(Arkin, 1989) and, throughout training, the world
changed both in terms of the locations of obstacles,
and the obstacle density. This continuously dynamic
world produced a robot controller that was shown to
generalize to new worlds after training, and in fact
often performed better in these worlds than controllers
specifically evolved for them and them alone.

LAE was then used to adapt further the robot con-
troller, using a novel version of an ES. The task of the
robot was similar to its task during training: it had to
move towards the light source goal whilst avoiding
obstacles. However, once a goal had been found, the
light would be switched off, and another switched on
to provide the next goal. Experiments were carried out
in a number of different dynamic environments, in
which the number of obstacles changed at different
rates and with different frequency.

The ES was designed to be minimal, to fit on
almost any robot, having a very small population size

196 Adaptive Behavior 11(3)

of three chromosomes, and used only the mutation
operator. A novel technique was used to offset the
instability caused by having such a small population
size in a dynamic world: rather than the best genotype
automatically replacing the parent in each generation,
it was saved and only replaced the parent if it also per-
formed well in the next generation (Walker, 2003).

Experiments, reported by Walker (2003), tested
the algorithm in simulation, and showed that the
evolved controller ported successfully to a physical
Khepera. Further experiments were carried out on a
physical Khepera robot. The conclusions that have
been drawn from this work are:

• Even a minimal LAE algorithm can improve the
performance of a trained robot controller in
dynamic environments.

• The improvement seen is compromised when the
environment changed suddenly, massively, and/or
frequently.

• A training phase is vital to the performance of the
minimal LAE algorithm.

This work is apparently unique in combining TPE and
LAE, both using evolution for adaptation, and in test-
ing the algorithm in a variety of dynamic worlds to
assess its robustness and generalizability.

6.3 Applying the Evaluation Criteria to the
Combined Approaches

As these approaches use both TPE and LAE, both sets
of criteria are relevant for their analysis. However, the
focus of Urzelai and Floreano’s work was on the life-
long adaptation, and so reports are not available of the
trained robot’s robustness and accuracy before that
phase began.

TPE Analysis:
Time required for training: In Walker’s work the use
of a simulation allowed the robot to be quickly and
easily tested in a continuously changing world, some-
thing that would have been much harder to achieve in
a physical training environment.

Generality of the controller: Walker’s training phase
was designed to produce a robot that was immediately
robust to new situations, and tests were carried out
show that the evolved controller could indeed transfer

from simulation to reality, and that it could perform
well in a range of environments with significantly dif-
ferent obstacle densities.

Accuracy and repeatability: In Walker’s work, the
evolved controller was found to transfer to the physi-
cal robot well, although the transfer was not entirely
accurate—the physical robot performed well with
good repeatability, even more so than the simulated
robot.

LAE Analysis:
Adaptation in real time: Both Urzelai and Floreano’s,
and Walker’s work showed quick adaptation to
changes in the environment. Walker tested the limits
of the ES-based LAE algorithm in dynamic environ-
ments. Floreano et al’s work in evolving plastic neural
networks showed that it was possible to produce suc-
cessful adaptation to a variety of new environments
and situations (Floreano & Mondada, 1996a) using
their method.

Overall improvement in performance: Both projects
showed an overall improvement in performance for the
robot when using lifelong adaptations. Walker com-
pared a robot using the LAE algorithm with one without
and found a significant improvement in performance
except in very rapidly changing environments.

Interference of the evolutionary process in the robot’s
task: As lifelong adaptations occurred onboard the
robots themselves, neither of the projects reviewed in
this section involved robot’s interrupting their task to
communicate with a workstation or other robot, how-
ever both were tethered for power and communication
and/or results capture purposes and may have had
their motion impeded to some extent.

7 Discussion

7.1 New Directions

In both TPE and LAE there are various possible com-
binations of simulation-based and physical robot-
based evolution; some of these possibilities have been
discussed above, but some have not. These possibili-
ties are tabulated in Tables 1 and 2. The rows of these
tables are labelled with the location of the evolution-

Walker, Garrett, & Wilson Evolution for Real Robots 197

ary method (i.e., does evolution occur in a simulation
or on a physical robot, or to some combination?) and
the columns refer to the type of agent to which the
resulting, evolved robot controller is applied (i.e., to a
simulated robot, a physical robot, or to some iterative
combination?).

7.1.1 Possibilities in TPE Methods Table 1 contains
nine possible approaches to TPE. Consider the three
possible applications of TPE that occur solely in a
simulated world. The work of Sims (1994) and Maut-
ner and Belew (1999) shows that it can be applied to a
simulated robot, and the work of Jakobi, Husbands,
and Harvey (Jakobi et al., 1995) shows that it can be
applied to a physical robot. However, it does not
appear to be particularly useful to apply a controller
developed in simulation to both robot and simulation,
except perhaps to compare the results from two appli-
cation domains. Note that this information from the
physical world cannot be fed back to be used in fur-
ther training, because the method is restricted to adap-
tation from simulated data alone.

Next consider a training phase where a controller
is evolved using information drawn from both simu-
lated and physical worlds. This may involve two sepa-
rate populations of controllers being evolved, one
from simulated data and one from physical data, or
there may be a single population that is tested in both
simulated and physical worlds. In both cases, if the
evolved controller is then used on a simulated robot, it
may be more robust than it would otherwise have
been, since it will have evolved to cope with noise
from the real world; if the controller is then used on a
physical robot, it may have been evolved more
quickly than it otherwise would have been (Wilson,
2000; Nolfi et al., 1994). It is also conceivable that the
evolved controller may be ported to both a simulated
and a physical robot, since this would again allow for

a comparison of results. In addition, perhaps a candi-
date controller that performs well in both domains
should be seen as more fit than one that performs well
in only one domain. Nevertheless, the simulation of
the world itself may still limit the realism of any
results in this case.

Finally, a controller evolved on a physical robot
alone can obviously be applied to a physical robot
(Floreano & Mondada, 1996b), but it might also be
ported to a simulation if it was important to do fast,
off-line experimentation on its task, although the use-
fulness is somewhat in question because the accuracy
of the results (relative to the real world) would then
depend on the accuracy of the simulation. It is hard to
imagine a situation where it would be useful to port
the results to both types of world, other than for exper-
imental comparison of results, because information
from the simulated robot cannot be used in further
training.

7.1.2 Possibilities in LAE Methods Table 2 contains
the nine possible approaches to LAE. Consider the
case where the robot controller is developed by LAE
in simulation alone. Clearly such a controller can be
usefully used in a simulated world, where it is a life-
long extension of the corresponding training phase
case. However, its application to a physical robot (or
to the simulated and physical robots) is meaningless in
the lifelong case, since LAE would require feedback
from the physical robot and this row of the table con-
cerns the type of LAE that occurs only in simulation.

There is a general principle here: in all three table
rows, the type of agent on which evolution occurs
must be the same as the type of agent it is applied to
because the LAE learning loop cannot otherwise be
properly closed. This was not true with training phase
methods, where there was no feedback after training
was complete, so it was possible to train on one type

Table 1 Feasible and infeasible approaches for TPE; known approaches are discussed in the main text. (✓ indicates a
feasible approach, × indicates an infeasible approach, () indicate a degree of doubt)

Evolution/agent type Simulation Simulation and real robot Real robot

Simulation ✓ × ✓

Simulation and real robot ✓ (✓) ✓

Real robot (✓) × ✓

198 Adaptive Behavior 11(3)

of world and then to apply it to another type of world.
Therefore, the three meaningful implementations of
LEA require the feedback between the evolution and
application of the robot controller to be related to the
same type of world.

The second row of the table requires additional
comment. Here evolution is taking place both in simu-
lation and on the physical robot and feedback is
obtained from both types of world. As discussed
above, this might be used to help constrain the search
for fitter genotypes, but now there is an extra over-
head associated with having two world models active
simultaneously: the combined cost of running both
forms of evolution may make this option seem less
attractive that the other two. Nevertheless, we have
seen that periodically updating the simulation with
information about the real world from the robot has
been used successfully by Grefenstette & Ramsey
(1992) and Parker (2000a).

This outlines all the possible combinations of
location for evolution and application, for both train-
ing phase and LAE. But there are still other combina-
tions! Any of the useful training phase methods
described above may precede any of the useful LAE
methods, as long as the evolved controller can be
transferred to the chosen domain for the LAE meth-
ods: as mentioned, the LAE methods require feedback
between the identical domain; for example, the con-
troller from a simulated robot would need to ported to
a physical robot if physical robot LAE were to be
used, as by Walker (2003). Since this gives 21 combi-
nations—many of them fairly pointless—the follow-
ing section attempts to reduce them to the interesting
possibilities.

7.1.3 Interesting, Novel Combinations of TPE and
LAE Methods It seems sensible that in most settings
the starting place for evolution would be a simulation.

This is because to do otherwise risks damaging a robot
as its initial random controller genotype may send it
dashing into harm, and beginning with hand-designed
controllers defeats the object of learning. Just consid-
ering simulated, or simulated-plus-real TPE followed
by the three possible types of LAE reduces the possi-
ble combinations of TPE and LAE to six.

If simulated TPE were to be followed by simu-
lated LAE there would at no point be application of
the controller to a real robot; it has already been
explained why such systems are not being explored
here. Performing TPE in simulation and LAE exclu-
sively on a physical robot has already been discussed
(for example, Walker, 2003).

Applying simulation-only TPE to a simulated and
physical robot LAE session would allow evolution to
be made progressively more realistic by input from
the real world, while minimizing the initial risk of
damage to the real robot. This might even be imple-
mented as a physical robot that could simulate
intended actions before taking them to check they
would not be dangerous, perhaps preventing wrong
actions before they are actually made in the real
world. No examples have been found of combining a
training phase with this type of LAE.

The remaining three possibilities follow simula-
tion-plus-real-robot TPE with the three possible types
of LAE. Each of these approaches may involve more
risk to the robot than simulation-only TPE, but they
might have the advantage that real data are being used
in adaptation for more (or all) points of the robot con-
troller’s evolution. Further work in this area would be
of value.

8 Conclusions

In this paper we have seen several approaches to adap-
tation by evolution in robotics. Evolution may be used

Table 2 Feasible and infeasible approaches for LAE; known approaches are discussed in the main text; (✓ indicates a
feasible approach, × indicates an infeasible approach)

Evolution/agent type Simulation Simulation and real robot Real robot

Simulation ✓ × ×

Simulation and real robot × ✓ ×

Real robot × × ✓

Walker, Garrett, & Wilson Evolution for Real Robots 199

exclusively in a training phase prior to a task, or life-
long during a task or set of tasks, or it may involve a
combination of the two. In all cases, however, the aim
is to make the training of a robot more efficient than it
would be by hand and this is not always achieved. A
number of conclusions can be drawn:

• Initial evolution on a physical robot is problem-
atic at best and damaging to the robot, or its envi-
ronment, at worst.

• Evolution in simulation usually requires some
input from a physical robot to produce useful
results, although a good simulation can minimize
these problems.

• TPE may not be able to adapt to all that the robot
might experience, limiting the performance of the
robot.

• LAE requires that the learning loop is closed and
therefore restricts the results of evolution to the
same type of agent as that on which the evolution
is executed; all three possible choices of agent
have been seen to have their limitations.

• The benefits of combined TPE and LAE can be
obtained by preceding the LAE on a physical
robot with a TPE phase that includes an element
of simulation; other types of training phase appear
to be less useful, although there are a number of
combinations still to be explored.

A combination of simulated and real robots appears to
offer real benefits in the evolution of robot controllers.
This is not perhaps surprising since psychologists
believe that humans also perform both types of activ-
ity when learning a task (Bruner, 1964). Drawing fur-
ther on these insights may stimulate the development
of still better learning methods. For example, the abil-
ity to interpolate and extrapolate in simulated behav-
ior appears to be useful in human thinking: we can
remember physically jumping off a wall and extrapo-
late, in simulation, to what might happen if we
jumped off a cliff, and recoil from the results.

The work presented here has suggested that the
use of simulation has a place in evolutionary research
on physical robots, and made some suggestions for
where is best to use it. Improvements are still required
in terms of the speed and accuracy of adaptation, and
in this respect adaptation by evolution may need to be
combined with other methods of adaptation; hope-
fully, some of the strategies suggested here for com-

bining TPE and LAE, as well as the possibility of
using simulation data alongside data from a real robot,
may help to open up new avenues of research in this
area.

Note

1 For the remainder of the paper we use the term robot to
mean a mobile robot; we do not consider robot arms, or
other types of robot.

References

Arkin, R. C. (1989). Motor schema–based mobile robot naviga-
tion. International Journal of Robotics Research, 8(4) 9–12.

Back, T. and Schwefel, H.-P. (1993). An overview of evolu-
tionary algorithms for parameter optimization. Evolution-
ary Computation, 1(1) 1–23.

Bajcsy, R. (1988). Active perception. Proceedings of the IEEE,
76(8) 996–1005.

Banzhaf, W., Nordin, P., & Olmer, M. (1997). Generating adap-
tive behavior using function regression within genetic pro-
gramming and a real robot. In 2nd International Conference
on Genetic Programming, (pp. 35–43) San Francisco:
Morgan Kaufmann.

Bongard, J. (2002). Evolving modular genetic regulatory networks.
In Proceedings of The IEEE 2002 Congress on Evolutionary
Computation (CEC2002), (pp. 1872–1877). IEEE Press.

Booker, L., Goldberg, D., & Holland, J. (1989). Classifier sys-
tems and genetic algorithms. Artificial Intelligence, 40,
235–282.

Braitenberg, V. (1994). Vehicles: Experiments in Synthetic Psy-
chology. MIT Press, Cambridge, Massachusetts.

Brooks, R. (1986). Achieving artificial intelligence through
building robots. A.I. Memo 899, Massachusetts Institute
of Technology Artificial Intelligence Lab.

Brooks, R. (1992). Artificial life and real robots. In European
Conference on Artificial Life, (pp. 3–10).

Bruner, J. S. (1964). The course of cognititve growth. Ameri-
can Psychologist, 19, 1–15.

Colombetti, M. & Dorigo, M. (1992). Learning to control an
autonomous robot by distributed genetic algorithms. In
From Animals to Animats 2, Proceedings of the 2nd Inter-
national Conference on the Simulation of Adaptive Behav-
ior SAB-92, (pp. 305–312).

Dorigo, M. (1995). ALECSYS and the AutonoMouse: Learn-
ing to control a real robot by distributed classifier systems.
Machine Learning, 19(3) 209–240.

Ficici, S., Watson, R., & Pollack, J. (1999). Embodied evolu-
tion: a response to challenges in evolutionary robotics. In

200 Adaptive Behavior 11(3)

8th European Workshop on Learning Robots, (pp. 14–
22).

Floreano, D. & Mondada, F. (1994). Automatic creation of
autonomous agent: Genetic evolution of a neural-network
driven robot. In Proceedings of 3rd International Confer-
ence on Simulation of Adaptive Behavior, (SAB-94), (pp.
421–430).

Floreano, D. & Mondada, F. (1996a). Evolution of plastic neu-
rocontrollers for situated agents. In From Animals to Ani-
mats 4, Proceedings of the 4th International Conference
on the Simulation of Adaptive Behavior (SAB-96).

Floreano, D. & Mondada, F. (1996b). Evolution on homing
navigation in a real mobile robot. IEEE Transactions on
Systems, Man and Cybernetics (pp. 396–407).

Floreano, D., Nolfi, S., & Mondada, F. (1998). Competitive co-
evolutionary robotics: from theory to practice. In From
Animals to Animats 5, Proceedings of the 5th Interna-
tional Conference on the Simulation of Adaptive Behavior
SAB’98, Cambridge, MA: MIT Press.

Floreano, D., Nolfi, S., & Mondada, F. (2001). Co-evolution
and ontogenetic change in competing robots. In M., Patel,
V., Hanover, and K., Balakrishnan (Eds.) Advances in the
Evolutionary Synthesis of Intelligent Agents, Cambridge,
MA: MIT Press.

Floreano, D. & Urzelai, J. (2000a). Evolutionary on-line self-
organisation of autonomous robots. In Proceedings of the
5th International Conference on Artificial Life and Robotics.

Floreano, D. & Urzelai, J. (2000b). Evolutionary robots with
on-line self-organisation and behavioral fitness. Neural
Networks, 13, 431–443.

Floreano, D. & Urzelai, J. (2001). Evolution of plastic control
networks. Autonomous Robots, 11, 311–317.

Fogel, L., Owens, A., & Walsh, M. (1966). Artificial Intelli-
gence through Simulated Evolution. New York, Wiely.

Gallagher, J., Beer, R., Espenschied, K., & Quinn, R. (1994).
Application of evolved locomotion controllers to a hexapod
robot. Robotics and Autonomous Systems, 19, 95–103.

Goldberg, D. E. (1989). Genetic Algorithms in Search Optimi-
zation and Machine Learning. Reading, MA: Addison
Wesley.

Grefenstette, J. & Ramsey, C. (1992). An approach to anytime
learning. In Proceedings of the 9th International Machine
Learning Conference (pp. 189–195) Amsterdam: Elsevier.

Grefenstette, J., Ramsey, C., & Schultz, A. (1990). Learning
sequential decision rules using simulation models and
competition. Machine Learning, 5(4) 35–81.

Grefenstette, J. & Schultz, A. (1994). An evolutionary approach to
learning in robots. In Machine Learning Workshop on
robot learning, New Brunswick, NJ.

Harvey, I. (1997). Artificial evolution and real robots. Artificial
Life and Robotics, 1, 35–38.

Holland, J. (1975). Adaptation in Natural and Artificial Sys-
tems. Ann Arbor, MI: University of Michigan Press.

Holland, J. (1993). Adaptation in Natural and Artificial Sys-
tems, an Introductory Analysis with Applications to Biol-
ogy, Control and Artificial Intelligence. Cambridge, MA:
MIT Press.

Hornby, G., Fujita, M., Takamura, S., Yamamoto, T., & Hana-
gata, O. (1999). Autonomous evolution of gaits with the
Sony quadruped robot. In Proceedings of the 1999 Genetic
and Evolutionary Computation Conference (GECCO’99),
(pp. 129–304).

Hornby, G., Lipson, H., & Pollack, J. (2001). Evolution of gen-
erative design systems for modular physical robots. In
IEEE International Conference on Robotics and Automa-
tion. Piscataway, NJ: IEEE Press.

Hornby, G. & Pollack, J. (2001). Evolving {L}-systems to generate
virtual creatures. Computers and Graphics, 25(6) 1041–1048.

Hornby, G., Takamura, S., Yokono, J., Hanagata, O., Yamamoto,
T., & Fujita, M. (2000). Evolving robust gaits with AIBO.
In IEEE International Conference on Robotics and Auto-
mation, (pp. 3040–3045).

Jakobi, N. (1994). Evolving sensorimotor control architectures
in simulation for a real robot. Master’s thesis, University
of Sussex.

Jakobi, N., Husbands, P., & Harvey, I. (1995). Noise and the
reality gap: The use of simulation in evolutionary robot-
ics. In Advances in Artificial Life: Proceedings of the
3rd International Conference on Artificial Life, (pp.
704–720) Berlin: Springer-Verlag.

Kato, T. & Floreano, D. (2001). An evolutionary active-vision
system. In Proceedings of the Congress on Evolutionary
Computation (CEC’01) (pp. 107–114). Piscataway, NJ:
IEEE Press.

Keymeulen, D., Iwata, M., Kuniyoshi, Y., & Higuchi, T.
(1998a). Comparison between an off-line model-free and
an on-line model-based evolution applied to a robotics
navigation system using evolvable hardware. In Artificial
Life VI: Proceedings of the Sixth International Conference
on Artificial Life, (pp. 199–209).

Keymeulen, D., Iwata, M., Kuniyoshi, Y., & Higuchi, T.
(1998b). Online evolution for a self-adapting robotic
naviagation system using evolvable hardware. Artificial
Life, 4, 359–393.

Koza, J. (1991). Evolution and co-evolution of computer pro-
grams to control independently acting agents. In From
Animals to Animats. Proceedings of the 1st Interna-
tional Conference on Simulation of Adaptive Behavior,
(SAB’91), (pp. 366–375). Cambridge, MA: MIT Press.

Koza, J. (1992). Genetic Programming. Cambridge, MA, MIT
Press.

Lewis, M., Fagg, A., & Solidum, A. (1992). Genetic program-
ming approach to the construction of a neural network for
control of a walking robot. In IEEE International Confer-
ence on Robotics and Automation, (pp. 2618–2623). Pis-
cataway, NJ: IEEE Press.

Walker, Garrett, & Wilson Evolution for Real Robots 201

Marocco, D. & Floreano, D. (2002). Active vision and feature
selection in evolutionary behavioural systems. In From
Animals to Animats: Proceedings of the seventh interna-
tional conference on the simulation of adaptive behviour
(SAB’02), (pp. 247–255).

Mataric, M. & Cliff, D. (1996). Challenges for evolving con-
trollers for physical robots. Robotics and Autonomous Sys-
tems, 19(1) 67–83.

Matellan, V., Fernandez, C., & Molina, J. (1998). Genetic
learning of fuzzy reactive controllers. Robotics and Auton-
omous Systems, 25, 33–41.

Matellan, V., Molina, J., Sanz, J., & Fernandez, C. (1995).
Learning fuzzy reactive behaviours in autonomous robots.
In 4th European Workshop on Learning Robots (pp. 45–
56). Karlsruhe, Germany.

Mautner, C. & Belew, R. (1999). Evolving robot morphology
and control. In Proceeding of the Artificial Life and
Robotics Conference (AROB-99).

Miglino, O., Lund, H., & Nolfi, S. (1995). Evolving mobile
robots in simulated and real environments. Artificial Life,
2, 417–434.

Mitchell, M. (1998). An Introduction to Genetic Algorithms.
MIT Press.

Mondada, F. & Floreano, D. (1995). Evolution of neural control
structures: some experiments on mobile robots. Robotics
and Autonomous Systems, 10, 221–249.

Mondada, F., Franzi, E., & Ienne, P. (1993). Mobile robot min-
iaturisation: a tool for investigation in control algorithms.
In Experimental Robotics 3: Proceedings of the 3rd Inter-
national Symposium on Experimental Robotics (pp. 501–
513). Berlin: Springer-Verlag.

Moody, J. & Darken, C. (1988). Learning with localised recep-
tive fields. In Proceedings of the 1988 Connectionist Mod-
els Summer School, (pp. 13–43). San Francisco: Morgan
Kaufmann.

Nehmzow, U. (2002). Physically embedded genetic algorithm
learning in multi-robot scenarios: The PEGA algorithm. In
2nd International Workshop on Epigenetic Robotics: Mod-
elling Cognitive Development in Robotic Systems.

Nolfi, S. & Floreano, F. (1998). How co-evolution can enhance the
adaptive power of aritificial evolution: implications for evo-
lutionary robotics. In Proceedings of EvoRobot’98, (pp. 2–8).
Berlin: Springer-Verlag.

Nolfi, S. & Floreano, F. (2000). Evolutionary Robotics, the
Biology, Intelligence and Technology of Self-Organizing
Machines. Cambridge, MA: MIT Press.

Nolfi, S. and Marocco, D. (2000). Evolving visually-guided
robots able to discriminate between different landmarks.
In From Animals to Animats 6. Proceedings of the sixth
International Conference on Simulation of Adaptive Behav-
ior (SAB’00), (pp. 413–419). Cambridge, MA: MIT Press.

Nolfi, S., Miglino, O., & Parisi, D. (1994). Phenotypic plasticity in
evolving neural networks. In Proceedings of the Interna-

tional Conference from Perception to Action, (pp. 14–57).
Los Alamitos, CA: IEEE Computer Society Press.

Nordin, P. & Banzhaf, W. (1995). Genetic programming con-
trolling a miniature robot. In Working notes of the AAAI-
95 Fall Symposium Series, Symposium on Genetic Pro-
gramming, (pp. 61–67). Cambridge, MA: AAAI.

Nordin, P. & Banzhaf, W. (1997). Real time control of a Khep-
era robot using genetic programming. Cybernetics and
Control, 26(3) 53–61.

Nordin, P., Banzhaf, W., & Brameier, M. (1998). Evolution of a
world model for a miniature robot using genetic program-
ming. Robotics and Autonomous Systems, 25, 10–16.

Olmer, M., Nordin, P., & Banzhaf, W. (1996). Evolving real-
time behavioral modules for a robot with GP. In Proceed-
ings of the 6th International Symposium on Robotics and
Manufacturing (pp. 67–80). New York: ASME Press.

Ostergaard, E. & Lund, H. (2003). Co-evolving complex robot
behavior. In ICES’03, The 5th International Conference
on Evolvable Systems: From Biology to Hardware. Berlin:
Springer.

Parker, G. (1998). Generating arachnid gaits with cyclic
genetic algorithms. In Genetic programming 1998: Pro-
ceedings of the 3rd Annual Conference (pp. 57–83). San
Francisco: Morgan Kaufmann.

Parker, G. (2000a). Co-evolving model parameters for anytime
learning in evolutionary robotics. Robotics and Autono-
mous Systems, 33, 13–30.

Parker, G. (2000b). Evolving leg cycles to produce hexapod gaits. In
The world Automation Congress WAC 2000, (pp. 250–255).
Albuquerque: TSI Enterprises.

Parker, G. (2003a). Learning adaptive leg cycles using fitness
biasing. In 2003 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS’03). Piscataway, NJ:
IEEE Press.

Parker, G. (2003b). Learning adaptive leg cycles using fitness
biasing. In 2003 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS’03). Piscataway, NJ:
IEEE Press.

Parker, G. and Blumenthal, H. J. (2002). Punctuated anytime
learning for evolving a team. In World Automation Con-
gress WAC’02. Albuquerque: TSI Enterprises.

Parker., G. and LaRochelle, K. (2000). Punctuated anytime
learning for evolutionary robotics. In The world Automa-
tion Congress WAC’00, (pp. 268–273).

Parker, G. and Mills, J. (1999). Adaptive hexapod gait control
using anytime learning with fitness biasing. In Proceed-
ings of the Genetic and Evolutionary Computation Con-
ference GECCO’99 (pp. 519–524). San Francisco: Morgan
Kaufmann.

Parker, G. & Rawlins, G. (1996). Cyclic genetic algorithms for
the locomotion of hexapod robots. In Proceedings of the
World Automation Congress (WAC ’96), Robotic and
Manufacturing Systems, 3, 617–622.

202 Adaptive Behavior 11(3)

Ramsey, C. and Grefenstette, J. (1993). Case-based initiali-
zation of genetic algorithms. In Genetic Algorithms:
Proceedings of the Fifth International Conference
(ICGA’93). San Francisco: Morgan Kaufmann.

Rechenberg, I. (1965). Cybernetic solution path of an experi-
mental problem. Royal Aircraft Establishment Translation
Toms, Trans 1122 B.F., Ministry of Aviation, Royal Air-
craft Establishment, Franborough, Hants.

Rechenberg, I. (1973). Evolutionstrategies: Optimierung Tech-
nischer Systeme nach Prinzipien der Biologischen Evolu-
tion. Frommann-Holzboog, Stuttgart.

Reynolds, C. (1994). Competition, co-evolution and the game of
tag. In Proceedings of the 4th Workshop on Artificial Life.
Cambridge, MA: MIT Press.

Salomon, R. (1996). Increasing adaptivity through evolution
strategies. In From Animals to Animats 4: Proceedings of
the 4th International Conference on the Simulation of
Adaptive Behavior (SAB’96), (pp. 411–420).

Salomon, R. (1997). The evolution of different neuronal con-
trol structures for autonomous agents. Robotics and
Autonomous Systems. Special issue: Robot Learning: the
New Wave, 647, 1–15. Cambridge, MA: MIT Press.

Schultz, A. & Grefenstette, J. (1992). Using a genetic algorithm
to learn behaviours for autonomous vehicles. In Proceed-
ings of the AIAA Guidance, Navigation and Control Con-
ference, (pp. 739–749).

Schwefel, H.-P. (1977). Numerische Optimierung von Computer-
Modellen mittles der Evolutionsstrategie. Basel: Birkhauser.

Sims, K. (1994). Evolving virtual creatures. In Computer
Graphics, Annual Conference Series, (pp. 1–2). New
York: ACM Press.

Spears, W., Jong, K. D., Back, T., Fogel, D., & de Garis, H.
(1993). An overview of evolutionary computation. In Pro-
ceedings of the 1993 Conference on Machine Learning,
(pp. 442–459). Berlin: Springer-Verlag.

Thompson, A. (1995). Evolving electronic controllers that
exploit hardware resources. In Advances in Artificial Life:

Proceedings of the 3rd International Conference on Artifi-
cial Life, (pp. 640–656). Berlin: Springer-Verlag.

Urzelai, J. & Floreano, D. (2000a). Evolutionary robotics: coping
with environmental change. In Proceedings of the genetic
and evolutionary computation conference GECCO’00, (pp.
941–948). San Francisco: Morgan Kaufmann.

Urzelai, J. & Floreano, D. (2000b). Evolutionary robots with
fast adaptive behavior in new environments. In Proceed-
ings of the 3rd International Conference on Evolvable
Systems: from Biology to Hardware, (pp. 24–51). Berlin:
Springer-Verlag.

Walker, J. (2003). Experiments in evolutionary robotics: inves-
tigating the importance of training and lifelong adapta-
tion by evolution. PhD thesis, University of Wales.

Walker, J. & Wilson, M. (2002). How useful is lifelong evolu-
tion for robotics? In From Animals to Animats: Proceed-
ings of the seventh international conference on simulation
of Adaptive Behavior (SAB’02), (pp. 347–348). Piscata-
way, NJ: IEEE Press.

Watson, R., Ficici, S., & Pollack, J. (1999). Embodied evolution:
Embodying an evolutionary algorithm in a population of
robots. In 1999 Congress on Evolutionary Computation,
(pp. 335–342). Piscataway, NJ: IEEE Press.

Watson, R., Ficici, S., & Pollack, J. (2000). Embodied evolu-
tion: distributing an evolutionary algorithm in a popula-
tion of robots. Technical Report CS-00-208, Department
of Computer Science, Volen National Center for Complex
Systems, Brandeis University, USA.

Wilson, M. (2000). Preston: A system for the evaluation of
behaviour sequences. In Demmiris, J. and Birk, A., edi-
tors, Interdisciplinary Approaches to Robot Learning,
Would Scientific 24(9) 185–208. Singapore: World Scien-
tific.

Wilson, M., King, C., & Hunt, J. (1997). Evolving hierarchical
robot behaviours. Robotics and Autonomous Systems. Spe-
cial Issue on Robot Learning: The New Wave, 22(3–4)
215–230.

About the Authors

Joanne Walker has M.Sc. and Ph.D. degrees in Computer Science from the University
of Wales at Aberystywth (1999 and 2003). She is currently a research assistant in the
Intelligent Robotics group at Aberystwyth, continuing her work using genetic and evolu-
tionary algorithms for adaptive robots. Joanne is also involved in running the UK Biologi-
cally Inspired Robotics Network (biro-net), which is based at Aberystwyth.

Walker, Garrett, & Wilson Evolution for Real Robots 203

Simon Garrett has a Ph.D. in Machine Learning and B.Sc. in Computer Science, both
from the University of Wales, Aberystwyth. Dr. Garrett has worked in research associate
positions at the University of Bristol and the University of Wales, Aberystwyth, and he is
now a lecturer at Aberystwyth. His research interests include the application of stochastic
and probabilistic methods to robotics and bioinformatics, and the use and development of
biologically inspired methods, such as artificial immune systems. Address: Department of
Computer Science, University of Wales, Aberystwyth SY23 3DB, Wales, UK. E-mail:
Srng@aber.ac.uk

Myra Wilson has a BSc from Aberdeen University and a Ph.D. in Artificial Intelligence
from Edinburgh. She is a lecturer at the University of Wales in Aberystwyth and head of
the Intelligent Robotics Group there. Myra is also in charge of the Biologically Inspired
Robotics Network (biro-net). Her interests include adaptive robotics and biologically
inspired systems. Address: Department of Computer Science, University of Wales, Aber-
ystwyth SY23 3DB, Wales, UK. E-mail: mxw@aber.ac.uk

