
An Approach to Anytime Learning

John J. Grefenstette and Connie Loggia Ramsey
Navy Center for Applied Research in Artificial Intelligence

Naval Research Laboratory
Washington, DC 20375-5000

Abstract
Anytime learning is a general approach to con-
tinuous learning in a changing environment.
The agent’s learning module continuously tests
new strategies against a simulation model of the
task environment, and dynamically updates the
knowledge base used by the agent on the basis
of the results. The execution module controls
the agent’s interaction with the environment,
and includes a monitor that can dynamically
modify the simulation model based on its obser-
vations of the environment. When the simula-
tion model is modified, the learning process is
restarted on the modified model. The learning
system is assumed to operate indefinitely, and
the execution system uses the results of learning
as they become available. An experimental
study tests one of the key aspects of this design
using a two-agent cat-and-mouse game as the
task environment.

1 INTRODUCTION

An intelligent robot will need extensive knowledge to
interact effectively with its external environment. The
acquisition of this knowledge is likely to present a
significant challenge to the widespread deployment of
intelligent robots. This challenge also represents an
important opportunity for machine learning. Several pre-
vious studies have explored different methods for
automating knowledge acquisition for intelligent robots,
each approach typically depending on different assump-
tions about what is already known about the task environ-
ment. If the robot’s task environment is well understood,
it may be most efficient to depend largely on a pre-
programmed model of the environment, and to use learn-
ing to improve efficiency and reactivity (Laird et al.,
1991). If the effects of the robot’s actions can not be
easily predicted but there are only a few important state
variables that affect the robot’s decisions, the robot might
use an internal model to accelerate its learning of state-
action mappings (Sutton, 1990). If the environment is
assumed to exhibit perpetual novelty, it might be useful

to enable the robot to learn a wide variety of cognitive
structures based on low-level perceptual stimuli (Booker,
1988). The key issue is not necessarily how complex the
environment is, but how easy it is to provide the robot
with the knowledge it needs, given the available
knowledge we have. Some decision-making environ-
ments may be quite complex, e.g., the space shuttle, but
may have fairly accurate models already available. How
might an intelligent agent use these models to acquire the
knowledge it needs to perform its tasks?

We will focus on learning in environments which have a
partial model available in the form of a simulation of the
task environment. We will assume that the simulation
provides enough fidelity to evaluate the likely
effectiveness of some course of action, but that the
environment is too complex to be modeled by an efficient,
completely faithful, deterministic simulation that could
be used by a traditional AI planner. For example, in the
case considered in our empirical study, the task involves
a probabilistic, continuous environment with other
agents. Other complexities may include sensor noise,
uncertainties about the future actions of other agents in
the environment, and uncertainties about the effects of the
agent’s own actions.

This study is motivated in part by the widespread availa-
bility of simulation models currently in use, especially in
the area of training for human operators. For example,
there exist many flight simulators in which a pilot can
practice maneuvers. The more sophisticated simulators
include other computer-simulated agents (e.g., other
planes, ships, etc.). Many aspects of such simulators,
such as weather conditions, terrain characteristics, even
the skill levels of the other simulated pilots, are usually
parameterized to allow a range of training experiences, or
to model probabilistic events. Besides training simula-
tors, there are simulators that have been used to evaluate
rule-based systems prior to deployment in an operational
setting (Fogarty, 1989). Both training simulators and
testing simulators usually include an evaluation mechan-
ism for the decisions made during the simulation run.
The goal of this study is to examine ways to utilize these
simulations as sources for knowledge acquisition for
intelligent agents.

Machine learning with simulators has been explored by
Goldberg (1983) in the area of gas pipeline control, and
by Buchanan et al. (1988) to learn error classification
rules for particle beam accelerators. Our approach
explores the effect of permitting the learning system to
modify the simulation based on its experience with the
operational environment.

We call the approach anytime learning to emphasize its
relationship to recent work on anytime planning and
scheduling (Dean and Boddy, 1988; Zweben, Deale and
Gargan, 1990). The basic characteristics of anytime algo-
rithms, as outlined by Dean and Boddy, are: (1) the algo-
rithm can be suspended and resumed with negligible
overhead, (2) the algorithm can be terminated at any time
and will return some answer, and (3) the answers returned
improve over time. Actually, the definition of an anytime
algorithm is essentially the same as the familiar notion of
iterative optimization algorithms. While it may be con-
sidered novel to use iterative improvement techniques in
planning and scheduling, the application of iterative
improvement methods such as genetic algorithms or rein-
forcement methods has a long history in machine learn-
ing.

However, our use of the term anytime learning is meant
to denote a particular way of integrating execution and
learning. The basic idea is to integrate two continuously
running modules: an execution module and a learning
module. The agent’s learning module continuously tests
new strategies against the simulation model, and updates
the knowledge base used by the agent on the basis of the
results. The execution module controls the agent’s
interaction with the environment, and includes a monitor
that can dynamically modify the simulation model based
on its observations of the environment. When the simula-
tion model is modified, the learning process is restarted
on the modified model. The learning system is assumed
to operate indefinitely, and the execution system uses the
results of learning as they become available.

This work is part of an ongoing investigation of machine
learning techniques for sequential decision problems.
The SAMUEL learning system employed in this study has
been described in detail elsewhere (Cobb and Grefen-
stette, 1991; Gordon, 1991; Grefenstette, 1991; Grefen-
stette, Ramsey and Schultz, 1990; Schultz, 1991).
SAMUEL is a system for learning reactive strategies
expressed as condition-action rules, given a simulation
model of the environment. It uses a modified genetic
algorithm, applied to sets of symbolic reactive rules, to
generate increasingly competent strategies. SAMUEL has
successfully learned strategies for a number of multi-
agent tasks, including evading attackers, tracking other
agents at a distance, and dogfighting. While the basic
ideas of anytime learning could be applied using a
number of other learning methods, especially other rein-
forcement learning methods (Barto, Sutton and Watkins,
1990), SAMUEL has some important advantages for this
approach. The ability of SAMUEL to learn rapidly from
partially correct strategies and with limited fidelity simu-
lation models has been established by previous studies

(Schultz and Grefenstette, 1990; Ramsey, Schultz & Gre-
fenstette, 1990). We believe that these features make
SAMUEL especially well-suited for anytime learning.

The remainder of the paper is organized as follows: Sec-
tion 2 presents some of the fundamental issues in the
design of an anytime learning system. Section 3
describes an empirical study with a particular instantia-
tion of the anytime learning approach, applied to a two-
agent cat-and-mouse task. Section 4 contains a summary
and outlines directions for further work.

2 AN ARCHITECTURE FOR ANYTIME
LEARNING

An architecture for anytime learning is shown in Figure
1. The system consists of two main components, the exe-
cution system and the learning system. The execution
system includes a decision maker that controls the agent’s
interaction with the external environment based on its
active knowledge base, or current strategy. The learning
system attempts to provide the execution system with an
improved strategy by experimenting with alternative stra-
tegies on a simulation model of the environment.

Environment
Decision
Maker

Simulation
Model

Decision
Maker
Model

Active
Knowledge

Base

Learning
Method

Test
Knowledge

Base

Monitor

EXECUTION
SYSTEM

LEARNING
SYSTEM

Figure 1: Anytime Learning System

There are two forms of communication between the exe-
cution system and the learning system. First, the learning
system notifies the execution system when it finds what
appears to be a more desirable strategy, based on tests
performed on the simulation model. When the execution
system receives such notification, it replaces its current
strategy with the new strategy. The second form of com-
munication occurs when the monitor module in the exe-
cution system notifies the learning system that the simula-
tion model needs to be adjusted. The monitor’s task is to
determine when its observations of the environment
conflict with the simulation model and what adjustments
should be made in the model to accommodate the obser-
vations.1 The learning system responds to a notice from

1 Related work in interleaving planning and execution in changing
environments has been considered by Howe and Cohen (1990).

the monitor by adjusting the simulation model, and possi-
bly restarting the learning process.

There are several fundamental decisions that will affect
the performance of an anytime learner. The success of
this approach clearly depends on the proper design of the
simulation. The simulation designer must identify those
aspects of the environment that are initially uncertain or
subject to change or drift. The designer must parameter-
ize these aspects so that the actual observed values are
within the space described by the parameters, and, finally,
design procedures for measuring the parameters in the
environment. Parameters can have qualitative or quanti-
tative values, and might be expressed as numeric ranges,
or as probability distributions. Typical parameters
include the speed and maneuverability of other agents,
maps of the environment, the weight of objects that the
agent must manipulate, or the probability distribution for
certain events. In all cases, the monitor must have some
way to measure the appropriate values in the environ-
ment. Measurement might be direct, through appropriate
sensors, or might be indirect, through experiments or
computations applied to sensor data. The selection of
simulation parameters is a crucial decision, and encapsu-
lates much of the domain knowledge available to the
simulation designer. Selection or definition of new simu-
lation parameters is not being considered as a learning
task in this paper.2

The implementation of anytime learning also requires
two policies for updating the learning model. First, the
conditions for restarting the learning system must be
selected. There are two important sources of information
for the monitor to consider in deciding that the simulation
model fails to fit the environment: parameter observa-
tions and performance observations. The monitor can
compare measurable aspects of the environment with the
parameters provided by the simulation design. The moni-
tor might also detect differences between the expected
and actual performance of the current strategy in the
environment.3 For example, if the performance level
degrades in the environment, that is a sign that the current
strategy is no longer applicable. If the performance of
the current strategy improves unexpectedly, it may indi-
cate that the environment has changed, and that another
strategy may perform even better.

Second, a policy for how to re-initialize the learning sys-
tem must be specified. The range of options for restarting
the learning system depends largely on the particular
learning method being used. Some learning methods may

2 The problem of real-time estimation of parameters of the
operational environment is known as the system identification problem
in Control Theory (Truxal 1961). We make no claim to having solved
the system identification problem. In fact, we require much less, since
we require only that the monitor estimate parameters of a simulation
model of the operational environment, not provide a valid, tractable
mathematical model of the environment, as required by Control Theory.

3 Hart, Anderson and Cohen (1990) discuss related issues
concerning the design of planners that monitor differences between
expected and actual progress of a plan.

require a complete restart when the simulation model
changes, and others may permit a more graceful adapta-
tion. For example, if a feed-forward neural net learning
method is being used, it may be difficult to decide which
weights should be modified when the model changes, and
a complete restart may be required. As the case study
will show, the population-based competition in a genetic
learning system provides a convenient mechanism for
changing the behavior of the learning system without
completely starting over.

3 A CASE STUDY

This section describes an initial case study using the any-
time learning architecture. We begin by describing the
task environment, the execution system and the learning
system. This is followed by the experimental design and
a discussion of the results.

3.1 TASK ENVIRONMENT

The task used in this case study is a two-agent game of
cat-and-mouse. The tracker agent, playing the role of the
cat, must learn to keep the mouse agent, or target, within
a certain distance, called the tracking distance, as shown
in Figure 2. The target (the mouse) follows a random
course and speed. The learning agent has a set of sensors,
namely: time (since the beginning of the episode), last-
turn (by the agent), bearing (direction to target’s posi-
tion), heading (relative direction of target’s motion),
speed (of the target), and range (to the target). Each sen-
sor has fairly large granularity. That is, the mapping from
the true world state to observed world state is many-to-
one. The sensors are also noisy, and may report incorrect
values. The tracker must learn to control both its speed
and its direction. It is assumed that the tracker has sen-
sors that operate at a greater distance than the target’s
sensors.

M

C

tracking
range

detection
range

Figure 2: Cat-and-Mouse Task

The object is to keep the target within range of the
tracker’s sensors, without being detected by the target.
The usual behavior of the target agent is a random walk,
occasionally changing its speed and direction. However,
if the target detects the tracker, the target immediately
flees the area at high speed. The target can only detect
the tracker if the tracker is within the detection radius of

the target. Furthermore, when the tracker is within the
detection radius of the target, the probability of detection
depends upon both the tracker’s speed and distance from
the target. The tracker does not initially have any infor-
mation concerning the relationship between its behavior
and its probability of detection by the target. In particu-
lar, the tracker does not know the detection radius or the
range of speeds that the target might assume. For further
details, see (Grefenstette, 1992).

The task is broken down into individual tracking
episodes. Each episode begins with a random placement
of the two agents, and lasts for 20 time steps. At the end
of each episode, the critic provides full payoff if the
tracker keeps the target within tracking distance for 75%
of the episode. Otherwise, the tracker’s partial payoff is
equal to the portion of time that it tracks the target.

While this particular task may be easy enough to yield to
traditional analysis, it is representative of the kinds of
uncertain environments in which a learning agent might
be useful. And in fact, the environment can be made
much more complex by adding additional agents on both
sides, taking fuel constraints into account, and so on.

3.2 EXECUTION SYSTEM

In SAMUEL the execution system’s knowledge base is a
reactive strategy consisting of a set of situation-response
rules. The execution system interacts with the external
environment through a process of reading its sensors,
finding rules in its strategy that match (or partially match)
the current sensors, resolving conflicts among the rules in
the match set, and selecting an action based upon the
selected rules (possibly constrained by other knowledge
sources).

In this case study, the monitor focuses on a single aspect
of the environment, the speed distribution of the target
agent. In the simulation model, when the target changes
direction, the speed of the target is selected from a nor-
mal distribution. The mean and standard deviation of the
speed distribution are two parameters of the simulation
model. The monitor’s task is to measure how well the
observed speeds of the target in the environment match
the current distribution assumed in the simulation model.
Using the 50 most recent samples of the target’s speed,
the monitor computes the observed mean and variance of
these samples, and compares the observed values with the
current simulation parameters, using the F-test to com-
pare the variances and the t-test to compare the means. If
either statistical test fails, the monitor changes the simu-
lation parameters to reflect the observed mean and vari-
ance of the target speed, and notifies the genetic algo-
rithm to restart. The monitor considers only parameter
changes when deciding whether to restart the learning
system.4

4 Future studies will investigate performance-related triggers as

well.

Since these experiments were performed using a simula-
tion model in the role of the external environment, as
well as in the learning system, it was necessary to make
some assumptions about the relative speeds of the execu-
tion and learning systems. In general, it is safe to assume
that anytime learning will only be used when the simula-
tion model of the environment can be run faster than
real-time. In this study, the execution system was res-
tricted to execute one episode for every 1000 episodes
executed in the learning simulation model. This is based
on an assumption that an episode in the real environment
would take about two minutes of real time. Since this is
probably an optimistic assumption for real robotic agents,
the 1000-to-1 relative speed of the learning simulator is
actually a fairly conservative estimate.

3.3 LEARNING SYSTEM

A number of learning systems are compatible with the
anytime learning approach. This study builds on our pre-
vious experience with SAMUEL, a system that uses
competition-based machine learning to develop reactive
strategies. The operation of SAMUEL has been described
in detail in the literature (Grefenstette, Ramsey and
Schultz, 1990; Grefenstette, 1991). Space permits us
only to mention some of the features that make SAMUEL
an appropriate method for anytime learning. SAMUEL is
specifically designed for reactive agents whose percep-
tion facilities are limited to a fixed set of discrete, possi-
bly noisy, sensors. SAMUEL allows a fixed set of control
variables that may be set by the decision making agent.
The system’s decision rules are limited to simple
condition/action rules of the form

IF c 1 AND . . . AND cn
THEN SET a1 AND . . . AND am

where each ci is a condition on one of the sensors and
each action aj specifies a setting for one of the control
variables. A reactive strategy in SAMUEL comprises a
set of such decision rules.

The knowledge base in SAMUEL can be initialized with
strategies that provide a minimal level of competence on
the performance tasks (Schultz and Grefenstette, 1990).
SAMUEL improves its reactive strategies through the
application of competition at two levels. First, SAMUEL
maintains a population of alternative strategies. These
strategies compete with one another using a genetic algo-
rithm (Holland, 1975), as follows: Each strategy in the
current population is evaluated on a number of tasks from
the problem domain (typically, 20 tasks in the experi-
ments described here). As a result of these evaluations,
strategies with high performance are selected and recom-
bined, using idealized genetic operators such as CROSS-
OVER and MUTATION, producing plausible new strategies
for the next iteration. Second, at the rule level, each rule
is assigned a strength that estimates its utility on the basis
of its record of past payoff (Grefenstette, 1988). Conflict
resolution is implemented as a probabilistic competition
among rules based on rule strength. Low strength rules
are eventually deleted to make room for variants of

Members of
Current Population

(50%)

Default Strategies
(25%)

Exploratory Strategies
(25%)

Figure 3: Population when Resetting the Learning System

higher strength rules. Plausible variants of high strength
rules may be introduced by traditional learning operators
such as SPECIALIZE and GENERALIZE (Grefenstette, 1991).

When the learning system receives a restart notice from
the monitor, it begins by formulating a new initial popu-
lation for the genetic algorithm. The initial population
represents the system’s initial set of hypothetical stra-
tegies for the new environment. In this study, we form
the initial population from three classes of strategies, as
shown in Figure 3. First, half of the strategies in the
current population are chosen to survive intact. This pro-
vides a bias in favor of the assumption that the new
environment is essentially similar to the previous one.
Second, part of the population is initialized with default
strategies that are known to perform well against a broad
range of speed values for the target, centered on its
medium speed setting. The default strategies will provide
useful starting points for the learner if the environment is
changing from an extreme special case back to what the
simulation designer considered a more normal case.
Finally, part of the population is initialized with stra-
tegies that generate essentially random behavior by the
tracker. These strategies will provide useful starting
points for the genetic algorithm if the environment is
changing in a direction that has not been encountered
before. This restart policy illustrates the advantage of the
population-based approach used by the genetic algo-
rithm: it allows the learning system to hedge its bets,
since the competition among the strategies in the popula-
tion will quickly eliminate the strategies that are not
appropriate for the new environment, and will converge
toward the appropriate strategies.

Strategies are selected by the learning system for use by
the execution system, as follows: The genetic algorithm
in SAMUEL evaluates each strategy by measuring the
performance of the given strategy when solving tasks on
the simulation model. At periodic intervals (10 genera-
tions in the current experiments), a single strategy is
extracted from the current population to represent the
learning system’s current hypothetical strategy.5 If the

5 The extraction is accomplished by re-evaluating the top 20% of
the current population on 100 randomly chosen episodes on the
simulation model. The strategy with the best performance in this phase
is designated the current hypothesis of the learning system.

current hypothesis outperforms (in the simulation model)
the execution system’s current strategy (in the operational
environment), the execution system accepts the learning
system’s strategy as its new current strategy.

3.4 EXPERIMENTAL DESIGN

The experiments were designed to explore how well the
anytime learning system can respond to changing
environmental conditions, in this case the speed distribu-
tion of the target agent. During the experiments, the
speed distribution of the target agent varied according to
the schedule in Table 1.

Table 1: Environmental Distribution of Target Speeds

Episodes Mean Target Speed Std. Dev.__
1 - 50 250 33.3_____________________________________

51 - 250 400 10.0_____________________________________
251 - 450 450 10.0_____________________________________
451 - 650 50 16.6_____________________________________
651 - 700 250 33.3�

�
�
�
�
�
�

�
�
�
�
�
�
�

We will refer to the various environmental conditions by
giving the mean and standard deviation for the speed dis-
tributions. The (250, 33.3) distribution in the first and
last segments of the run is considered the normal case for
this task. During the second segment, the target agent
assumes relatively high speeds of (400, 10.0), making the
tracking task much more difficult. This is followed by a
similar, but even more difficult, distribution of (450,
10.0). During the fourth segment, the target assumes a
distribution of (50, 16.6) that is radically different from
the previous case, but should be relatively simple since
the target is moving so slowly. The final segment returns
to the normal case.

In order to test the anytime learning design, we per-
formed a lesion study, disabling the key element in the
feedback loop between the execution system and the
learning system, namely, the monitor module. This study
allows us to test the following hypothesis:

Dynamically modifying the simulation model
will accelerate learning in a changing
environment.

We performed two separate series of runs. In the baseline
runs, the monitor was disabled. The learning system ran
continuously using the normal case distribution of (250,
33.3) for the entire course of the run. Whenever the
learning system found a strategy that tested better on the
simulation model, it passed the new strategy to the execu-
tion system for use against the environment. In the any-
time learning runs, the monitor was enabled, and updated
the simulation model whenever it detected statistically
significant changes in the observed speed distribution.
Whenever the learning system found a strategy that tested
better than the current performance of the active strategy,
it updated the strategy of the execution system.

Note that, in a broad sense, even the baseline system is an
anytime algorithm. The experiment described here
focuses on testing the effectiveness of the closed-loop
form of the anytime learning approach.

3.5 RESULTS AND COMMENTS

The experimental comparison between the baseline run
and the anytime learning runs is shown in Figure 4. The
vertical lines indicate the points at which the environ-
ment changes, as shown in Table 1. The anytime learning
performance is shown as the solid graph. The baseline
learning performance is shown as the dotted graph. The
graphs were generated as follows: During each run of the
system, the strategy used during each 10-episode block
by the execution system was stored, and later tested on
1000 randomly selected episodes, using the same
environment that it encountered during the run. Each
data point in the graphs represents the average perfor-
mance of a strategy over these 1000 episodes. The data
was averaged over 5 independent sets of runs for each of
the baseline and the anytime learning experiments.

Since the baseline learning system received no feedback
about the changes in the environment, the performance
declined significantly when the more difficult speed dis-
tributions arose. The performance of the anytime learn-
ing system also declined initially during the first two
environmental shifts, but, unlike the baseline system,
made significant progress in re-learning against the new
environments. Also note than when the environment
returned to the normal case at the end of the experiment,
the baseline learning system exhibited an advantage over
the anytime learner. This is to be expected, since the
baseline learner continued to concentrate its efforts on
learning improved strategies against the normal case
throughout the run. Obviously, the value of monitoring
the environment will be most significant when the opera-
tional environment fails to meet the simulation designer’s
initial assumptions.

The most promising aspects of the results are that, within
each of the epochs after an environmental change, the
anytime learning system consistently improves the per-
formance of the execution system over the course of the
epoch. Of course, the anytime learning system pays a
price in terms of the initial part of each epoch, when the
learning system is restarted. Additional refinement of the
restart policy can be expected to reduce the initial cost of
relearning. And, the longer the epochs last, the greater
the expected benefit of anytime learning will be.

A t-test between corresponding points on the two graphs
indicates a statistically significant difference at the 0.95
level at nearly every point, with the exception of the
region between 500 and 600 generations, where the two
graphs cross. In all three cases of evironmental change,
the anytime learning run eventually achieves a
significantly better performance than the baseline run.
Based on this data, we are justified in accepting the
hypothesis that the mechanisms in the anytime learning
system outperform the baseline system on this changing

Success
Rate
Of

Current
Strategy

Episodes

0

20

40

60

80

100

0

20

40

60

80

100

0 100 200 300 400 500 600 700

0 100 200 300 400 500 600 700

.
.
.
.
..
.
.
.
.
.
..
.
.
..
...

..
..

.
.
.
..

..
.
.
..
.
.
..
.
.
.
.
..
.
.
..
.
.
..
.. ..

....
..

.....
.

ANYTIME
. . . BASELINE

Figure 4: Anytime Learning vs. Baseline Learning

environment.

4 SUMMARY

The contribution of this paper is to examine one approach
to dividing the total learning effort between the execution
and learning systems. The particular approach presented
here assumes that there is a simulation model available
for learning, and that environmental changes can be
accommodated by changing the simulation parameters. If
the complexity and uncertainty about the environment
prevents the use of look-up tables, and the environment
changes slowly with respect to the speed of the learning
system, the approach to anytime learning based on the
SAMUEL architecture is promising. This approach has
been designed to scale up to cases in which several
environmental variables are changing simultaneously.

Many of the particular decisions we made during this ini-
tial study require further explorations. Some of the major
issues to address include:

• The restart policy. This study considered only parame-
ter differences between the observed environment and the
simulation model. Performance triggers, e.g., when a
strategy does not perform as well in the operational
environment as in the learning simulation, should also be
incorporated.

• The re-initialization policy for the learning system.
Case-based approaches for initializing the population
might also be considered. For example, given a new set
of simulation parameters, initialize the population with
strategies from the most similar previously learned cases.
This approach has been considered in other genetic learn-
ing systems (Zhou, 1990).

• More sophisticated monitors. It might be interesting to
design the monitor so that it could detect when the simu-
lation cannot be brought into sufficient agreement with
the observed environment. It would be useful for the sys-
tem to indicate when extensive re-programming of the
simulation model is required.

As simulation technology improves, it will become possi-
ble to provide autonomous systems with high fidelity
simulations of environments whose complexity or uncer-
tainty precludes the use of traditional knowledge
engineering methods. This study provides further evi-
dence that machine learning techniques may enable the
design of high performance autonomous agents that learn
through interactions with a simulation of the task
environment. Further developments along these lines can
be expected to reduce the manual knowledge acquisition
effort required to build intelligent robotic systems with
expert performance in complex domains.

References

Barto, A. B., R. S. Sutton and C. Watkins (1990). Learn-
ing and sequential decision making. In Learning and
computational neuroscience, M. Gabrial and J. W.
Moore, eds., Cambridge: MIT Press.

Booker, L. B. (1988). Classifier systems that learn inter-
nal world models. Machine Learning 3(2/3), 161-192.

Buchanan, B. G., J. Sullivan, T. P. Cheng and S. H. Clear-
water (1988). Simulation-assisted inductive learning.
Proceedings Seventh National Conference on Artificial
Intelligence. (pp. 552-557).

Cobb, H. G. and J. J. Grefenstette (1991). Learning the
persistence of actions in reactive control rules. Proceed-
ings of the Eighth International Machine Learning
Workshop (pp. 293-297). Evanston, IL: Morgan Kauf-
mann,

Dean, T. and M. Boddy (1988). An analysis of time-
dependent planning. Proceedings of the Seventh
National Conference on AI (AAAI-88). (pp. 49-54). St.
Paul, MN: Morgan Kaufmann.

Fogarty, T. (1989). The machine learning of rules for
combustion control in multiple burner installations.
Proceedings of the Fifth IEEE Conference on AI Applica-
tions (pp. 215-221).

Goldberg, D. E. (1983). Computer-aided gas pipeline
operation using genetic algorithms and machine learn-
ing, Doctoral dissertation, Department Civil Engineering,
University of Michigan, Ann Arbor.

Gordon, D. F. (1991). An enhancer for reactive plans.
Proceedings of the Eighth International Machine Learn-
ing Workshop (pp 505-508). Evanston, IL: Morgan Kauf-
mann.

Grefenstette, J. J. (1988). Credit assignment in rule
discovery system based on genetic algorithms. Machine
Learning 3(2/3), 225-245.

Grefenstette, J. J. (1991). Lamarckian learning in multi-
agent environments. Proceedings of the Fourth Interna-
tional Conference of Genetic Algorithms (pp 303-310).
San Diego, CA: Morgan Kaufmann.

Grefenstette, J. J. (1992). The evolution of strategies in
multi-agent environments. Adaptive Behavior 1(1).

Grefenstette, J. J., C. L. Ramsey and A. C. Schultz (1990).
Learning sequential decision rules using simulation
models and competition. Machine Learning 5(4), 355-
381.

Hart, D. M., S. Anderson and P. R. Cohen (1990)
Envelopes as a vehicle for improving the efficiency of
plan execution. Proceedings of a Workshop on Innova-
tive Approaches to Planning, Scheduling and Control
(pp. 71-76). San Diego: Morgan Kaufmann.

Holland, J. H. (1975). Adaptation in natural and
artificial systems. Ann Arbor: University Michigan Press.

Howe, A. E. and P. R. Cohen (1990). Responding to
environmental change. Proceedings of a Workshop on
Innovative Approaches to Planning, Scheduling and Con-
trol (pp. 85-92). San Diego: Morgan Kaufmann.

Laird, J. E., E. S. Yager, M. Hucka and C. M. Tuck
(1991). Robo-Soar: An integration of external interac-
tion, planning, and learning using Soar. Robotics and
Autonomous Systems 8(1-2) 113-129.

Ramsey, C. L., A. C. Schultz and J. J. Grefenstette
(1990). Simulation-assisted learning by competition:
Effects of noise differences between training model and
target environment. Proceedings of Seventh Interna-
tional Conference on Machine Learning (pp 211-215).
Austin, TX: Morgan Kaufmann.

Schultz, A. C. (1991). Using a genetic algorithm to learn
strategies for collision avoidance and local navigation.
Proceedings of the Seventh International Symposium on
Unmanned, Untethered Submersible Technology (pp
213-225). Durham, NH.

Schultz, A. C. and J. J. Grefenstette (1990). Improving
tactical plans with genetic algorithms. Proceedings of
IEEE Conference on Tools for AI 90 (pp 328-334).
Washington, DC: IEEE.

Sutton, R. S. (1990). Integrated architectures for learn-
ing, planning, and reacting based on approximating
dynamic programming. Proceedings of the Seventh Inter-
national Conference on Machine Learning (ML-90),
Porter, B. W. and R. J. Mooney, eds., (pp 216-224). Aus-
tin, TX: Morgan Kaufmann.

Truxal, J. (1961). Indentification of process dynamics, in
Adaptive Control Systems, 51-90, E. Mishkin and L.
Braun, eds., McGraw-Hill.

Zhou, H. H. (1990). CSM: A computational models of
cumulative learning. Machine Learning 5(4), 383-406.

Zweben, M., M. Deale and R. Gargan (1990). Anytime
rescheduling. Proceedings of a Workshop on Innovative
Approaches to Planning, Scheduling and Control (pp.
251-259). San Diego: Morgan Kaufmann.

